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FOREWORD

This document presents the results of a study of
Mechanical Impact System Design for Advanced Space-
craft, The study comprised a Phase I, Design Concept
Selection; Phase II, Preliminary Design and Analysis;
and an Addendum for the MISDAS Application to the AES-
type Spacecraft. The study was conducted by the Struc-
tures and Dynamics Department of the Space and Infor-
mation Systems Division of North American Aviation,
Inc., for the Manned Spacecraft Center of the National
Aeronautics and Space Administration under Contract
NAS9-4915, The MISDAS Study was performed by
S&ID under the technical cognizance of J, McCullough
of the Mechanical and Landing Systems Branch, NASA/
MSC. Theworkwas performedby ateam of Research and
Engineering personnel, and coordinated with Apollo and
AES Engineering in those areas where implementation
of the land impact system could influence vehicle design,
cost, or schedule.

In order to present a complete documentation of the
study, extensive use of information already presented in
the Design Concept Selection and AES application phases
of this study has been made in the preparation of this final
report. This report was prepared by A, I. Bernstein,
Project Manager, NAA/S&ID. Major contributors were
A.S. Musicman, Project Engineer; H, Bransky, E.M.,
Vanalstyne, R. S. Barr, D. A, Reed, Jr., and E, G.
Clegg, Design Engineers; J. Partin and D, Herting,
Dynamic Engineers; C. D. Haynie, Manufacturing Engi-
neer; R, Snyder, Jr. and W, A, Bateman, Structures
Engineers; and A. Kusano, Weights Engineer,
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SUMMARY

The Space and Information Systems Division (S&ID) of North American
Aviation, Inc., (NAA), under contract to the National Aeronautics and Space
Administration, Manned Spacecraft Center (NASA/MSC), has performed a
preliminarydevelopment study of an earth landing system for advanced
Apollo-type spacecraft,

Contract NAS9-4915 involves a preliminary design study to select a
landing impact-absorption system that (1) can be incorporated in an Apollo-
type command module with minimum structural modification, (2) provides a
stable landing platform, (3) prevents vehicle overturning and damage to the
structure, and (4) permits reuse of the spacecraft with refurbishment after
landing. The study, which encompasses preliminary design and limited
stability analyses of candidate systems, is concerned with mechanical
systems, i.e., devices that require contact with the landing surface to
absorb impact energy.

In Phasel preliminary design, stability, and structural evaluations of
candidate design concepts were conducted. These tradeoffs led to the
recommendation that two concepts be studied further to identify an optimum
system. One concept (Figure 1) employs a six-legged segmented heat shield;
the other concept (Figure 2) uses an extended aft heat shield and 12 radially
deployed skids. This work was reported in Reference 1.

In Phase II, completed in May 1966, preliminary design and structural
and stability analyses were performed to obtain the weight and volume
required to apply MISDAS to a 14, 000-pound spacecraft, Major structural
and landing system components were sized; tradeoff analyses determined
that both landing systems were stable for the design conditions but required
Crew attenuation systems for vertical landing velocities above 15 fps, and
that roll control of the spacecraft during landing is needed when effective
ground coefficients of friction above 0. 35 are encountered.

To perform the landing stability studies, analytical computer programs
were developed that calculate and record the motion of the spacecraft about
three axes as a function of time after ground contact. The programs
consider variation in spacecraft vertical and horizontal velocity, attitude and
orientation, shock strut load-stroke characteristics, and ground coefficient
of friction. The stability analysis of the six-legged vehicle with segmented
heat shield was performed with a new computer program which describes the
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.

Figure 1. Segmented Heat Shield Design

Figure 2. Radial Skid Design
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vehicle's motion about three axes. An existing Apollo two-body stability
analysis computer program was modified to describe the geometry of the
vehicle with deployed heat shield and radial skids. The stability investi-
gations indicated that both design concepts can perform stable landings over
the specified design envelope of horizontal and vertical velocities, landing
attitudes, and ground conditions. The design drawings and analysis
presented in Phase II of the contract identified major members of each
MISDAS installation, spacecraft compatibility problems, load paths,
deployment sequence of moving parts, installation requirements, and
structural member sizes. Table 1 presents a summary of characteristics
of the two systems considered.

The six-legged, segmented heat shield concept is recommended for
further development. This concept offers better landing stability, lighter
weight, greater reliability of the retrorocket system, and simpler
mechanical design than the deployed heat shield-radial skid concept. While
the six-legged system will require development of a segmented heat shield
system, this concept is considered to be technically feasible.

A program for the development and qualification of the MISDAS system
is presented, with a preliminary schedule. This schedule is based on the
MISDAS system requirements only, and is not intended to show the impact
on spacecraft development schedule,

Under an extension of the contract a preliminary study was conducted
on the application of these two concepts to an AES vehicle. This required
study of a 10, 600-pound spacecraft including preliminary design, structural
and stability analysis using the specified landing velocities, ground
conditions, and spacecraft attitudes; preliminary study of the relocation of
equipment in the aft compartment; preliminary study of installation and
deployment of the retrorocket system; and preliminary manufacturing and
development studies. The two MISDAS concepts were found applicable to
AES, able to provide stable landings, and feasible from a manufacturing
viewpoint. This study is reported in Reference 2.

SID 66-409
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Table 1. Summary of System Characteristics
Six Legged Heat Shield Radial Skid
Criteria (Figure 1) (Figure 2)
Land-Landing Stability
Vy =0 - 15 fps
VH = 0 - 80 fps Stable Stable
p=0.35
Vy = 0 - 80 fps Unstable forp > 0.4 Unstable for p > 0.4 and
VH = 0 - 80 fps and Vy 5 25 fps - Vv 5 25 fps - requires
L=0-1.00 requires roll control roll control

Water-landing

Good landing and
floating stability

Shield must be deployed
prior to landing, com-

simplicity

expected promising landing
stability
Weight Penalty
(14, 000 pound)

Vy =0 - 15 fps 673 1b 955 1b

Vy = 0 - 20 fps 1244 1b 1166 1b

Vy =0 - 30 fps 2406 1b 2226 1b
Manufacturing Within state of the art Within state of the art
Apparent Reliability Good Poor
Mechanical design Good Fair

Development problems

Heat shield requires

Skid housings and

development mechanism exposure to
environment
Retromotor installation | Good Poor
(AES application)
Spacecraft compatibility | Good Good
-4 -
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INTRODUCTION

Future National Space Program missions will call for routine
operational use of reentry vehicles which have enough maneuverability
to make land landings at selected recovery sites and which can be reused
with minimum refurbishment. The entry vehicles must be designed for
normal and emergency landing on surfaces of varying slope, uniformity,
and mechanical properties, and at critical combinations of vertical and
horizontal velocity as dictated by local wind conditions and by the capability
of future recovery systems utilizing glide chute concepts and retrorockets
to limit the descent velocity. Furthermore, the landing systems must
provide stable landing conditions and must protect the spacecraft and crew
from excessive loads.

The design of a mechanical impact system for an Apollo-type spacecraft
is the objective of this study. In addition to satisfying the criteria noted
above, the system is designed to fit within the space available between the
structure and heat shield and involves minimum modification of the Command
Module structure. The attempt to incorporate a reliable, practical,
mechanical impact system for earth-landing of Apollo imposes the following
major design problems:

1. The vehicle must not turn over on landing.

2. The system must absorb landing impact energy without
subjecting the structure, crew, or payload to excessive
accelerations.

3. The system must fit within the limited space available between
the Apollo heat shield and structure.

4. The system should satisfy current state-of-the-art standards
for simplicity, reliability, and minimum weight.

The S&ID approach to this problem has consisted of the generation and
screening of 10 design concepts; selection of two feasible concepts; deter-
mination of their dynamic landing characteristics through use of specially
developed new computing tools; sizing of large key structural components
through preliminary design and stress analysis efforts; assessment of
weight and volume penalties involved in the incorporation of MISDAS to an
Apollo-type spacecraft; and selection of one concept for recommendation to
NASA for further design and analysis. These steps are discussed in detail
in this report.

-5-
SID 66-409



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

GUIDELINES, CONSTRAINTS, AND DESIGN CRITERIA

To evaluate the installation of MISDAS in an Apollo-type advanced
spacecfaft, the specific guidelines, constraints, and design criteria listed
below were established. These criteria define the basic spacecraft
geometry, landing conditions, stability requirements, acceleration limits,
vehicle performance, ground surface properties, and material properties
used in the study.

MISDAS DESIGN REQUIREMENTS

Design requirements for MISDAS are as follows:

1.

The system will require contact with the landing surface to absorb
impact energy.

The system will be stowed during flight and deployed prior to
landing.

Deployment time is not to exceed 30 seconds.

The system will be designed for maximum reliability, simplicity,
and efficiency.

The vehicle will not overturn during landing and shall not sustain
damage to the inner structure.

The established crew tolerances for impact accelerations and
onset rates will not be exceeded.

Design will be compatible with the Apollo structural drawings so
that a minimum of structural modification is required for stowage
and to support loads during impact.

The design will be optimized for minimum weight and stowed
volume. Itis a design goal to restrict the impact system weight

to 3.5 percent of the total landing weight of the spacecraft,

No part of the system will be located inside the crew compartment.

SID 66-409
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10. The energy absorbing portion of the system can be designed for
minor refurbishing after each landing.

11. Ultimate design loads for the overall system will be 1.33 times
greater than those experienced while landing under the worst
combination of the following performance criteria. Ultimate
design loads for components which impact the ground shall be
equal to those experienced while landing under the worst combi-
nation of the following performance criteria.

PERFORMANCE CRITERIA

Performance criteria for MISDAS, as applied to the basic Apollo-type
spacecraft and for the AES application study, are tabulated below.

MISDAS/AES
Item MISDAS Application

1. Vehicle landing weight 14, 000 pounds 10, 600 pounds
2. Rate of descent 0 to 15 fps 0 to 15 fps
3. Horizontal velocity Figure 3 Figure 3
4, Landing surface Soil and water Soil and water

a. Ground slope +5° +5°

b. Holes and protuberances +3 inches —

c. Coefficient of friction 0.35to 1.0 0. 35
5. Spacecraft attitude

a. Roll +10° +10°

b. Pitch +10° +10°

c. Yaw *10° +10°

d. Suspension angle 27° (Water impact)

0° (Land impact)
e. Suspension angletolerance |[#2° +2°

-8 -
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It shall be a design goal for the system to accommodate landings of a
roll angle of 180 degrees (backwards).

Figure 3 shows the basis for the horizontal velocity and spacecraft atti-
tude criteria. This graph has horizontal velocity plotted as a function of
spacecraft alignment with the wind direction (roll). This assumes emergency
wind conditions of 51 feet per second and a parachute lift-to-drag ratio of 1,
which provides a horizontal velocity of 30 feet per second.

The shaded area of the curve represents the normal landing conditions.
At zero-degree roll, or direct alignment into the wind, the horizontal landing
velocity would be 81 feet per second, while the vehicle landing at 180 degrees
roll, or against the wind, would have a backward velocity of 21 feet per
second.

The landing system designed under the subject contract will accom-
modate all combinations of horizontal velocities and wind alignment conditions
shown in Figure 3, in addition to the reserve chute landing conditions.
Descending on the reserve chute, the vehicle can land at a horizontal velocity
of 50 feet per second, with roll attitude random with respect to wind
direction.

SOIL CONDITIONS

All translational motion after initial contact is assumed to be in the
form of skidding or sliding, acting parallel to the ground surface. No
rebound, soil-vehicle deflection, earth cratering, or variation in the coef-
ficient of friction during the landing sequence is considered.

MATERIAL PROPERTIES

The mechanical and physical properties of structural materials will be
the guaranteed minimum values as given in the following documents:

1. MIL-HDBK-5, November 1964 revision (Reference 3)
2. MIL-HDBK-17, June 1965 revision (Reference 4)

3. S&ID Structures Manual, 543-G-11, revised December 15, 1965
(Reference 5)

SPACECRAFT DESIGN REQUIREMENTS
The spacecraft, when modified to incorporate the MISDAS system, will

be capable of withstanding boost, abort, space environment, and atmospheric
entry loads and water impact loads for a vertical velocity of 15 fps at

- 10 -
SID 66-409

e




-

NORTM AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

touchdown. The effects on MISDAS and inner structure of landing velocities
of 20 and 30 fps, and ground friction coefficients of 0.35 to 1. 00 will be
investigated for stable landings. These loads are specified in Apollo
Requirements Manual ARM-6 (Reference 6). The factors of safety of 1. 50
for atmospheric entry and 1. 00 for water impact, lpecxfied in ARM-6 are
applicable to this study.

.11 -
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PHASE | - INITIAL DESIGN CONCEPT SELECTION |

In Phase I of the study, two mechanical impact systems which best
satisfy the program objectives were selected and defined. The concepts
studied included one suggested by NASA and nine proposed by the contractor.
The major technological problem was imposed by the requirement that the
spacecraft not turn over when landing at any critical combination of horizontal

~ velocity up to 80 feet per second, descent velocity up to 15 feet per second,

and touchdown attitude up to 42 degrees (suspension angle plus pitch angle
plus ground slope). After considering concepts involving displaced heat
shields, extended skids, extended legs, airplane-type landing gear, inflated
air bags, and crushable structural components, the following 10 concepts,
shown in Figures 4 through 13, were selected for preliminary evaluation:

Chordwise-deployed skids (Concept A)

Radially-deployed skids (Concept B)

Tricycle gear side landing (Concept C)

Forward-extended double shoes (Concept D)

Implanted anchor (Concept E)

LEM-type four-legged gear (Concept F)

Four-segment extendable heat shield (Concept G)

Forward-translated heat shield (Concept H)

Extended heat shield/airbag (Concept J)

Two-segment translated heat shield (Concept K)

Three concepts (D, H, and K) were eliminated for instability under
side wind conditions, One new concept (Concept L, Figure 14),a six-
segment hinged heat shield variation of Concept G,was formulated, These
eight concepts were laid out to scale to assure that they fit in the limited
space available outside the command module structure, to show where Apollo
equipment must be relocated, and to identify modifications required for the
Apollo heat shield or primary structure, Preliminary stability analyses
were conducted to define the overturning stability env_lope of the spacecraft

- 13 -
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in terms of velocity, spacecraft attitude, and soil conditions. The stability
analyses were based on a two-body, three-degree-of-freedom model, con-
sidering all components as rigid bodies, and assuming a nondeforming
ground surface. Structural and weights analyses were conducted to define
member sizes and materials, weight and volume requirements, and effect
on the Apollo structure,

be = — —

Figure 14. Concept L, Six-Segment Hinged Heat Shield Concept

Selection of an optimum design for the mechanical impact system
followed a step-by-step screening and tradeoff analysis. The relative design
efficiencies of the system was compared for the following items.

I. Impact system weight

2. Impact system volume

3. Stability envelope

4., Design reliability and efficiency

- 19 -
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5. Required modification to Apollo

6. Reusability

7. Required refurbishment

8. Effect of increased rate of descent

Figure 15 shows the logic followed in the tradeoff analysis. A scoring
system was used to select two candidate systems on the basis of weight,
volume, stability, efficiency, compatibility with Apollo, reusability, and
growth potential. These criteria provided a guide to the selection of the
radial skid and hinged heat shield designs for detailed analysis, System
weights are compared in Table 2. The radial skid system had been elimi-
nated early in the tradeoff analysis because of a total weight of 1960 pounds
resulting from absorbing part of the landing energy through bending of the
skids. Further analysis under more favorable assumption (viz., changing
the parachute hang angle so that ground impact will always occur on the
heat shield, and so that the skids will only prevent tumbling) reduced the
weight penalty to an acceptable value. These tradeoffs led to selection

of two concepts for detailed analysis in Phase II: the deployed heat shield -
radial skid system shown in Figure 5 and the six-legged segmented heat
shield concept shown in Figure 14, The Phase I study, including design
drawings, stability and structural analysis, and weights data, is presented '
in detail in Reference 1,

- 20 -
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Figure 15. System Selection Logic
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Table 2. MISDAS Preliminary Weight and Volume Comparison

Weight | Volume
Concept* Description (1b) (cu ft)
A Deployable heat shield/chordwise-extended 1300 1.6
skids
B Deployable heat shield/radially-extended 1960 3.2
skids
C Tricycle landing gear 1200 8.6
E Implanted anchor . 410 1.4
F Deployable heat shield/four-legged gear 620 3.6
G Four-segment translated heat shield 710 2.2
J Extended heat shield/airbag ol o
L Six-segment hinged heat shield , 610 1.6
*Reference 1.
*%No analysis - concept unstable.

- 22 -
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APPLICATION OF MISDAS TO AES

Under a modification to the MISDAS contract, a study was performed
on the application of the two landing systems identified in Phase I to an
AES-type vehicle. The study, described in detail in Reference 2, included
the preliminary design, structural analysis, and stability analysis of the
two landing systems using the AES-specified weight of 10, 600 1b, horizontal
landing velocities of zero to 80 fps, vertical landing velocities of zero to
15 fps. AES spacecraft attitudes, and a zero degree parachute hang angle;
installation and deployment of the retrorocket systems; and preliminary
manufacturing and development program studies.

To perform the landing stability analyses, computer programs were
developed that calculate and record the motion of spacecraft about three
axes as a function of time after ground contact., The stability analysis of
the legged vehicle was performed employing a new computer program which
describes the vehicle's motion about three axes. The Apollo two-body
stability analysis computer program was modified to describe the geometry
of the vehicle with deployed heat shield and radial skids. The investigations
indicated that both designs can perform stable landings over the specified
envelope of horizontal and vertical velocities, landing attitudes, and ground
conditions. Figures 16 and 17 show results of these stability investigations
for the two MISDAS concepts.

The preliminary technical studies of the application of MISDAS indicate
the feasibility of installing either concept in the AES spacecraft. The radial
skid/deployed heat shield design (Figure 1) and the six-segment hinged heat
shield concept (Figure 2) can both provide stable landing and satisfactory
impact attenuation within the range of horizontal and vertical velocities,
spacecraft-ground attitudes, and ground conditions specified for the AES
spacecraft.

The loading conditions that design the structure of both concepts were
ground impact, water impact, boost abort, and atmospheric entry. The
guidelines, constraints, and design criteria section of the Apollo require-
ments manual ARM-6 were considered applicable to this structure. In
accordance with contract requirements, a factor of 1. 33 was used for
structure that is essentially MISDAS. For structural components that
impact the ground or water, applied loads were considered to be ultimate,
because these items are expected to yield on impact, and the resulting
distortion is not detremental to the objectives of the mission or crew safety,
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Figure 16. Stability Limits for Segmented Heat Shield Concept
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Figure 17. Stability Limits for Radial Skid Concept
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Component-designed entry conditions were analyzed with a limit to ultimate
factor of 1. 50 to be consistent with Apollo design. The analysis considered
a temperature range of -150 to 600 F for all components external to the
inner structure and a temperature range of -150 to 200 F for the inner
structure. All components were sized to low positive margins of safety to
minimize overall system weight.

The stress and weights analyses indicated that the six-legged seg-
mented heat shield concept can be incorporated in AES for a vehicle weight
increase of 556 pounds; the radially deployed skid concept would require a
weight increase of 737 pounds. Preliminary manufacturing and program
development studies showed both systems to be technically feasible and
capable of development and qualification in about the same time span. To
conform with the AES engineering weight data, the Apollo Block II weight
data was utilized as a base point to determine the weight penalty for adding
a mechanical impact landing system. The weight penalty of the mechanical
landing system is considered to be the weight of the landing gear system
and the effect of all modification required on the aft heat shield structure and
inner structure,.

Within the landing criteria considered in this program,both vehicle
concepts appear capable of stable land landings. Although not all possible
landing cases were investigated, the most adverse conditions were identi-
fied. Several statements can be made regarding stability trends:

1. Vehicle stability will decrease sharply with an increase in the
effective friction coefficient of the vehicle with the ground.

2. Vehicle stability decreases rapidly with an increase in normal
velocity to the ground.

3. For friction independent of sliding velocity, horizontal velocity
has little effect on stability except for its contribution to normal
velocity.

4, The effects of ground slope, slope direction, parachute swing
angle, parachute direction of swing, and roll angle on stability
are not easily identified. Therefore, most of the stability study
was done for different combinations of these angles.. The most
unstable condition was landing with horizontal velocity in the
direction of downslope and a maximum impact angle of 17 degrees
(5-degree ground slope plus 12-degree parachute angle, zero-
degree direction of swing, roll angle of zero degrees).
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5. A horizontal velocity of 30 fps has been used to determine the
stability envelope. This velocity is sufficiently large to allow the
vehicle to slide after initial impact without appreciably changing
its normal velocity when landing on up or down slope. Larger
horizontal velocities have been found to give a resultant decrease
in normal velocity, with stabilizing effects on the vehicle landing
up- or down-slope.

The design investigations of integration of retrorockets and the mechan-
ical impact attenuation systems into the Block Il Apollo command module
indicated that such an integration is technically and physically feasible for
both the segmented heat shield concept and the deployable heat shield/radial
skid concept. It must be recognized that the actual structural modifications
and equipment rearrangement of the high-density packaging in the aft equip-
ment bay necessary to accommodate the retrorocket and mechanical impact
attenuation systems are significant changes, although vehicle shape and mold
lines are not affected. The requirements and conceptual design of the shock
struts were reviewed by the Loud Company, Menasco Manufacturing
Company, and the Cleveland Pneumatic Tool Company and found to be
feasible,

A development program for MISDAS application was also presented.
Specific areas recommended for follow-on included the development of seg-
mented heat shields, extension of the stability analysis programs to
incorporate the response of the ground-to-vehicle impact, and utilization of
scale-model tests to verify the MISDAS/AES vehicle stability envelope.

The purpose of this phase of the study, Application of MISDAS to AES,
was to determine the structural aspects and landing dynamic characteristics
of a MISDAS system for an AES-type spacecraft. The design criteria estab-
lished were not intended to encompass the complete AES operational require-
ments, The effects of system failure (e. g., single retrorocket failure,
failure of the heat shield to extend) were not within the scope of the study.
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PHASE 1I-DESIGN AND ANALYSIS

Phase II is concerned with application of the two landing systems
identified in Phase I to an Apollo-type advanced spacecraft with a landing
weight of 14, 000 pounds. In addition investigations of the effects of
emergency conditions, represented by vertical landing velocities of 20 and
30 fps, and ground friction coefficients from 0.35 to 1, 00, on MISDAS
components design, inner structure, and the vehicle stability were
conducted.

This phase of the study consisted of preliminary design and analysis
of the two systems identified during phase I (i.e., the segmented heat shield
and the radial skid systems). Design drawings were prepared, components
were sized, and weights and volumes were calculated for both of the systems
and their associated attachment members. Ioad path diagrams and drawings
were prepared showing position sequence of landing system components from
stowed position to impact. New weights and volumes were calculated for
similar systems designed to sustain rates of descent of 20 and 30 fps.
Manufacturing requirements of the two landing concepts were investigated
and found to be feasible. These analyses resulted in the selection of the
segmented heat shield-legged vehicle concept for recommendation to NASA
for further design and study. A preliminary development and qualification
plan and schedule was prepared.

EVALUATION OF SIX-SEGMENT HEAT SHIELD CONCEPT

STRUCTURAL SYSTEM DESCRIPTION

The attenuation system shown on Figures 18 and 19 consists of six
landing legs, each an identical segment of the command module base,
stowed symmetrically within the base. Before impact, each leg is extended
downward from inboard hinges by a single hydraulic strut which also provides
dissipation of the impact energy. The landing legs or segments are
recessed within the existing heat shield thickness leaving the same unoccupied
gap between the heat shield and the spacecraft inner structure as in the
current vehicle. The outside face of the landing legs conforms in contour
to the base of the spacecraft, presenting an even spherical surface overall
to which the aft ablator sections are bonded. Gaps in the heat shield are
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to be filled with silicone gasket seals bonded to the nonmoving structure.
The seals possess sides sloped from the motion of extension to minimize the
friction of scrubbing as the landing legs extend. Geometric arrangement of
the impact attenuation system was sized for a touchdown clearance of

15 inches for the heat shield.

The extendable legs are sized to be located within recesses in the
lower face of the spacecraft heat shield. Their shape conforms to that of the
vehicle lower convex surface and the peripheral rim of the command module.
The peripheral rim, duplicated on the leg segments, forms a natural skid
along the translation vector of landing.

Each landing leg is retained in its stowage recess by an explosive
tension bolt on each side which must be released prior to landing system
extension. The landing leg design.embodies bending material directly con-
necting the points of load concentration (i. e., the footprint, the attenuation
strut rod, and the hinge points on the body). Depth of the bending material
at any point remains a constant at 1. 44 inches for stowage compatibility in
the heat shield.

Dissipation of impact energy in the attenuation system is by the ejec-
tion of oil from a hydraulic strut on each of the six landing leg segments as
it compresses in landing. The oil displaced in attenuation is that which was
previously introduced to the struts to extend the legs.

The struts operate in a duty length from 20. 50 inches retracted to
45. 38 inches extended, and derive their 24. 88-inch operational range from
two coaxial rods and pistons. Each strut is provided with a bleed line
located above the pistons that may be pinched off and welded at the conclusion
of fill and bleed of the system. Hydraulic oil is filled throughout the system,
but only above the pistons and in the retracted configuration. Cavities in the
cylinder below the pistons contain no oil, and are, therefore, vented exter-
nally to permit cylinder cavity evacuation as the struts are extended. The
unsealed end of the strut is equipped with a brazed bellows closure that
safeguards against inadvertent oil leakage past the piston seals. The
bellows should deflect sufficiently to permit limited stroking of the struts in
system checkout, be of sufficient strength to resist an internal atmosphere

in the vacuum environment, and be readily fractured by the force of rod
extension.

The cylindrical body of each strut is provided with a conical bellows
brazed to it and to the heat shield over the recess through which the rods
operate. When installed, the bellows form sealed closures at each clearance
hole to prevent flow of the hot gas from the landing retromotors to the inner
structure of the spacecraft.
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The aft heat shield ablative material and thickness distribution can be
the same as for the basic Apollo vehicle. Gaps in the heat shield ablator
made necessary by the extendable landing legs are filled with gasket material
conforming to the currently recommended silicone synthetic compounded to
the Apollo specification (Reference 7). Portions of the ablator over the legs
are bonded to them in precise shapes that present faying edges geometrically
shaped to match the extending motion with minimum bind and interference.
To achieve this, each gap in the ablator possesses a wall normal to the sur-
face on the fixed side, and a sloped wall on the movable side so the legs can
be withdrawn from the stowed position at an angle open to the motion, thus,
minimizing scrubbing.

The inboard center portion of the landing leg segments, a length of
about 22 inches, has a face which is a surface of revolution about the leg
hinge center line, except for a slight draft to aid the leg motion. The nomi-
nal radius of the surface is 4. 5 inches, which is considered a reasonable
minimum to avoid a feather edge on the external surface of the ablator panel
on the leg. The requirement to rotate the inboard side of the landing legs
4.5 inches from the hinge center line leaves narrow arms of 4.5 inches on
each side as supports from the two hinges. The hinge arms have been pro-
vided with ablator plugs sloped to jettison from the vehicle as the force of
the landing leg extension fractures their attachment. These details are
shown in Section C of Figure 20, ’

SYSTEM OPERATION

Deployment of the landing impact system starts with a landing signal
emitted by an altitude sensing system. This signal is followed by actuation
of the explosive bolts which retain the legs and introduction of pressure into
the struts by a two-way valve. The resultant force in the struts opens the
landing legs from the fixed heat shield and extends them to the landing
position. Landing energy is spent by ejection of the pressurized oil from the
compressed struts. Landing loads are transmitted to the command module
inner structure through strut attachments on the side wall and through the
leg hinges that connect to the fixed portion of the heat shield.

SPACECRAFT COMPATIBILITY

The command module inner structure will require modifications to
accommodate the landing impact system attachments. The design of the aft
heat shield was modified to incorporate the legged segments within the con-
tours of the Apollo command module. Technical problems derived from
manufacturing and operation of this heat shield have been studied and feasible
solutions are presented in Figure 20,
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PACKAGING CONSIDERATIONS

Figure 21 illustrates a packaging arrangement for the four retro-
motors required to attain the vertical landing velocities given in the
Guidelines, Constraints, and Design Crtieria Section, the subsystem com-
ponents, and six deployable heat shield segments. The structural and
mechanical details of the segmented heat shield concept are shown in
Figure 18. The six segments are symmetrically located in the heat shield
with the axis of the pattern positioned 14 degrees off the command module
+Zc axis. The retromotors are unsymmetrically positioned 30 and 40
degrees either side of the command module -Zc axis.

Installation of the landing leg extension and damping cylinder and the
four retromotors inthe command module aft compartment equipment bay will
require the following revisions in the location of the subsystem components
and the aft compartment frames:

l. The reaction control system motor switches located between
Frames 1 and 2 will require repositioning in the same area due to
installation of the landing leg extension and damping cylinder.

2. Frames 4 and 7 will require redesign to provide for installation of
the retromotors at these locations. The Block II side wall attach
fittings will be redesigned to provide support for the retromotors
and attach provisions for the new frames.

3. Frame 5 will require redesign to accommodate installation of the
landing leg extension and damping cylinder.

4. The arrangement of the fuel control panel between Frames 9 and
10 will require modification in the same area due to installation
of landing leg extension and damping cylinder.

5. The drinking water tank and plumbing located between Frames 13
and 14 will require relocating between Frames 22 and 23 to provide
space for the landing leg extension and damping cylinder. New sup-
port structure for both the water tank and cylinder will be required.

6. The retromotors located between Frames 16 and 17 and between
Frames 21 and 22 will require design of supports compatible with
the present aft compartment structure.

7. The landing leg extension and dampening cylinders between Frames
17 and 18 and between Frames 21 and 22 will require design of
support structure. The RCS control panel between Frames 21 and
22 will require modification to accommodate the landing leg and
damping cylinder and its support structure which is added to this
area.
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STRUCTURAL ANALYSIS

Stress and deflection analyses were performed to verify the technical
feasibility of the six-segmented heat shield concept installation in a 14, 000-
pound vehicle for an impact velocity of 15 fps. Stress calculations were
also performed to determine the effect of vertical velocities of 20 and 30 fps
on MISDAS structural design, These analyses included studies of the
principal components of the impact attenuation system, the aft heat shield,
and affected portions of the command module inner structure. A complete
analysis has been performed for the 15-fps impact velocity, which establishes
the sizes of the principal components of the impact system and demonstrates
the structural integrity of the command module inner structure. Loads
resulting from the higher impact velocities of 20 and 30 fps exceed the
structural capability of the command module inner structure. Sufficient anal-
ysis has beenmade in Appendix Aforthese velocities to determine the size of the
principal components of the impact system, and to show the nature and
extent of the changes required to reestablish the structural integrity of the
command module inner structure. The analyses are based on Figures 18
and 19, and the design criteria presented in the Guidelines, Constraints,
and Design Criteria section. Load paths are shown in Figure 22.

Critical Conditions

The critical design conditions are ground impact, water impact, 20-g
entry, and boost abort. The land impact condition is critical for design of the
shock strut, the shock strut attachment fittings, the command module inner
structure aft section from Sta Xc 14 to Xc 42, the deployable legs, and the
box section ring in the aft heat shield. The water impact condition is critical
for aft heat shield honeycomb panel design within a radius of 58 inches. The
20-g entry condition is critical for aft heat shield torsional section design.
Boost abort loads design the heat shield attachment to the inner structure.

Assumptions

The structural design criteria presented in the Guidelines, Constraints,
and Design Criteria section are consistent with the Apollo Requirements
Manual ARM-6 (Reference 6), with the following exceptions: the water impact
condition was limited to a consideration of 15, 20 and 30 fps impact velocity
for a vehicle weight of 14, 000 pounds. The ground impact condition was
based on a shock strut load derived from the dynamic analysis.

The following factors were applied to the design limit loads to establish
the ultimate load to be considered:
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1. Ground impact
Deployable legs: 1,00
All other structure: 1.33
2. Water impact
All structure: 1.00
3. 20-gentry
All structure: 1.50
The 1.33 factor for the structure was specified in Paragraph IV-A-11
of Exhibit A of Contract NAS9-4915. The factor of 1,00 is used for the
components designed to impact on ground or water, because these components
are expected to yield on impact.
The aft heat shield, deployable legs, and the shock struts were analyzed
for a temperature of 600 F and the inner structure for a temperature of
200 F. These values are the maximum temperatures used for the Apollo
analysis. The value of 600 F is conservative in that it is the maximum

temperature expected at the ablator-heat shield interface.

Principal Results and Conclusions

The design concept shown in Figure 18 can satisfy the structural design
criteria. The member sizes derived from this study were used to calculate
the system weights shown under the Mass Properties discussion for the six-
segment concept. Table 3 shows the critical conditions, stress, and margin
of safety for each major component. The stress calculations are presented
in Appendix A of this report. Principal results are discussed below.

The aft heat shield substructure has been modified to accommodate the
six deployable legs within the contour, with changes resulting in the avail-
able load paths. All loads are applied to the heat shield, either as distributed
loads or loads concentrated at selected points. These loads are reacted by
the aft bulkhead ring of the command module inner structure. The primary
load path assumed is through that portion of the aft heat shield substructure
that has retained a full 2 -inch depth. A seéondary load path is available
through the 0.50-inch honeycomb panels forward of the deployable leg wells.
Conservatively, and for simplicity of analysis, these 0.50-inch panels have
been assumed to carry no primary loads; however, their presence is essential
to the heat shield structure to minimize differential deflection between the
segments during atmospheric entry. A box section ring 88 inches in diameter
has been welded into the structure to pick up the deployable leg hinges.
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Within this ring, the structure is considered as a spherical shell; outboard
of the ring, the 2-inch deep segments carry the loads from the heat shield to
the inner structure aft bulkhead ring in bending. The loss of hoop continuity
in the toroidal portion of the aft heat shield has been compensated for by an
increase in the depth and the gauge of the corrugated foil and skin.

The land impact loads on the deployed legs are applied to the outer skin
and reacted by a shock strut and two hinges per leg. To achieve the required
bending and torsional stiffness in the limited depth available, the legs have
been designed as box sections of riveted construction. Since the leg in the
retracted position forms part of the heat shield, and in this position, is
subjected to entry air loads, stiffeners have been added on the forward sur-
face of the outer skin to provide a panel stiffness equivalent to the fixed
portion of the heat shield.

The aft heat shield is bolted to the inner structure at the aft bulkhead
ring. To react the tensile loads present in the boost abort condition, 7/16-
inch bolts are required because space available between the deployable
segments permits installation of only 36 bolts; 59 are used in the present
Apollo. The forward end of each shock strut is attached to a fitting which
introduces the load to the inner structure aft sidewall. For the 15-fps
impact velocity consideration, this fitting is bolted to the girth ring and the
aft bulkhead ring, and is bonded to the aft sidewall skin. The aft sidewall
skin then reacts the vertical component of the shock strut load in shear. The
radial component of the shock strut load is carried in bending by the fitting
and is reacted by the rings. The loads associated with impact velocities in
excess of 15 fps require a different design (Appendix A, Pages 5.4 and 5.12).

Effects of Increased Vertical Velocity and Increased Friction Coefficient

A study was performed to determine the effects of vertical landing
velocities of 20 and 30 fps and of effective ground coefficients of friction in
excess of 0.35 on the structural design of the MISDAS components and the
spacecraft inner structure. This study, limited to stable landing conditions
defined by the dynamic landing analysis, consisted of a stress analysis and
component sizing for loads derived from vertical landing velocities of 20 and
30 fps. No analysis was performed for coefficients of friction larger than
0.35 because the spacecraft is not stable under those conditions without roll
control. The analysis shows that loads derived from 20 and 30 fps vertical
velocities exceed the structural capability of the Apollo command module
inner structure. Sufficient analysis has been performed (Appendix A) to
show the nature and extent of changes required to reestablish the structural
integrity of command module inner structure and landing system components.
The major revisions are described in the following paragraphs.
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Skin gauges required by the aft heat shield substructure, calculated for ‘
impact velocities of 15, 20, and 30 fps, are as follows:

88 -Inch Diameter

Velocity Skin Gauge Ring Cross Area
(fps) (inches (in. 2)
15 0.019 to 0. 055 1.48
20 0.018 to 0. 085 3.50
30 0,032 to 0. 148 4,10

The toroidal portion of the aft heat shield, designed by entry air loads
was not affected by the increased impact loads. The 0. 50-inch honeycomb
panel covering the deployable leg wells had to be moved forward to provide
the additional leg volume required to design for the 30-fps impact velocity,
reducing the clearance between the heat shield and inner structure to 0.3
inch.

Analysis of the deployable leg beam shows that the increased loads
associated with an impact velocity of 20 fps require two ''I'"' section members
in place of two channels to provide increased moment of inertial and increased
shear attachment capability, A sketch of the required section is shown on .
Page 5.3 of Appendix A. To achieve the moment of inertia and additional
shear attachment capability required by an impact velocity of 30 fps, more
members are necessary and an increase of 0.50 inch in the deployable leg
beam depth is required. '

The sketch on Page 5. 10 of Appendix A shows the changes required to
provide clearance for the increased leg section depth; the sketch on Page 5.11
shows the changes required by the deployable leg beam. Some weight saving
would result from increasing the number of leg hinges from 2 to 4 and, thus,
reducing the magnitude of the concentrated loads on the aft heat shield hinge
support ring, However, the additional cut-outs in the aft heat shield sub-
structural required for this change would increase the complexity of the
design,

Some structural redesign of the command module inner structure is
required to support the loads imposed by impact velocities of 20 and 30 fps.
For these conditions, a longeron is required at each shock strut location.

The longerons must be welded into the basic weld assembly of the aft section
in the same manner as on the existing Apollo. The shock strut attachment
fittings are located on these longerons with threaded fasteners. The required
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longeron sections for 20- and 30-fps impact velocities are shown in sketches
presented in Appendix A, Pages 5.4 and 5. 12, respectively. The reaction to
the shock strut radial load at the girth ring Station 43 exceeds the structural
capability of the ring section in the area of the main access hatch. Doubling
of the moment capability of this ring in the critical area is required by the
impact loads associated with 20 -fps velocity; four times the moment capability
is required by the 30-fps velocity. The analysis conservatively assumes that
all the vertical impact load imposed on the inner structure is reacted in shear
by the aft sidewall skins. To support this shear, the skin and weld land
thickness on the aft portion of the inner structure must be increased as

shown in the stress calculations of Appendix A.

Tables 4 and 5 show material, size, critical conditions, and factor of
safety achieved for major components of the segmented heat shield concept
modified to sustain landing at 20 and 30 fps, respectively.

STABILITY ANALYSIS

The landing stability characteristics of the segmented heat shield
vehicle were determined through the use of "LEGGED, "' a FORTRAN IV
computer program which is a three-dimensional mathematical model of a
legged spacecraft. When initial conditions (i.e., landing parameters) are
loaded, the program simulates the dynamics of a real spacecraft making an
earth landing. The ground reactions produce forces and torques in the
spacecraft. The laws of motion are integrated, using small time increments
to produce linear and angular acceleration, velocity, and displacement time
histories. Use of the FORTRAN IV feature NAMELIST allows for a flexible
input sequencing. This program is, therefore, very useful in parametric
studies. Loading time for the object deck is 30 seconds, and computer time
per landing case is on the order of 10 to 15 seconds. The LEGGED program
is described in detail in Report SID 65-278, presented as Appendix C of this
report.

The geometry of essential points on the spacecraft is described by the
coordinates of each point in a coordinate system fixed to the spacecraft
(capsule initial system). For example, the center of gravity is located by
loading in its three coordinates in the capsule initial system. The same
approach is used to establish the location of each strut end. Any number of
struts are allowed, and each may have different stroking properties. How-
ever, once a strut is located on the vehicle, the strut tip deforms (moves) in
a straight line toward the strut end attached to the spacecraft. The properties
of each strut must be expressible as a load-stroke curve which can be
formed by a series of straight lines. The principal strut property is plastic
deformation, but provisions are made for the inclusion of velocity damping
and elasticity. The struts (legs) are considered to be massless.
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The ground is considered as a rigid surface that has a constant friction .
coefficient with the spacecraft's legs., The ground may have a slope and a
direction of slope.

A partial list of vehicle input data for the program includes:

1. Number of legs

2. Acceleration of gravity

3. Coordinates of cg

4, Mass properties

5. Coordinates of each end of each strut

6. Load-stroke properties of each strut

The initial value (landing parameter) data includes:

1. Horizontal and vertical velocities

2. Roll, pitch, and yaw

3. Angular velocities

4. Ground slope and direction of slope

5. Friction coefficient with ground

6. Parachute swing angle .and direction of swing

The program output is primarily in the form of CRT plotting. Time
histories are plotted from the instant of impact for the following quantities:

l.  Acceleration, velocity, and displacement of the cg in a direction
normal to the earth

2, Roll, pitch, and yaw measured relative to the earth (earth y-z
coordinate axes from plane of ground)

3. Stroke of each strut (versus time)
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Angle Conventions

To define roll, pitch, and yaw, the vehicle is first rolled about its
vertical axis, then pitched about its y axis, then yawed about the z axis on
the capsule. The roll angle is always measured as the counterclockwise
angle from the horizontal velocity to the vertical plane containing the capsule
z axis, Axis convention is identified in Figure 23.

The ground slope is defined by a maximum slope and a direction of
slope. The direction of slope is measured in a counterclockwise angle
(right-hand rule) from the horizontal velocity. Positive slope is upslope.

The vehicle attitude may be defined by a parachute swing angle and its
direction of swing. Direction of swing is defined as the angle between the
vertical plane containing the capsule z axis and the vertical plane containing
the parachute riser lines., Positive swing and zero-direction of swing are the
same as positive pitch angle.

Horizontal and vertical velocity vectors always form the basic
reference plane.

XX
VERTllCAL

LAND LANDING
SUSPENSION ANGLE

Figure 23, MISDAS/AES Land Landing Attitude, Six-Legged System
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Landing Stability Considerations

Landing stability of the 14, 000-pound vehicle has been studied under
a variety of conditions, including vertical velocities of 20- and 30-fps, and
ground coefficients of friction of 0,35 to 1.0 and above. These analysis
have been based on those performed for the AES application, with strut loads
directly scaled from those used for the 10,600-pound vehicle (Reference 2).
Strut load-stroke properties used were the same for each of the six legs.
The stroke of each leg was from the initial location of the movable strut tip
toward the fired strut tip, in capsule initial coordinates with a straight line

as a path of motion, Center of gravity location, and strut tip coordinates

used were as indicated in the following table:

X y Z
Center of Gravity (inches) 36.9 1.79 6.25
Movable Strut Tips (inches)
Legl -15,0 -34. 67 60. 05
Leg 2 -15.0 -69.34 0.0
Leg 3 -15.0 -34, 67 -60, 05
Leg 4 -15,0 34, 67 -60. 05
Leg 5 -15.0 69. 34 0.0
Leg 6 -15.0 34,67 60. 05
Fixed Strut Tips (inches)
Leg 1 40. 0 -34, 67 60. 05
Leg 2 40.0 -69. 34 0.0
Leg 3 40. 0 -34, 67 -60. 05
Leg 4 40. 0 34, 67 -60, 05
Leg 5 40.0 69. 34 0.0
Leg 6 40.0 34. 67 60. 05
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Load stroke properties for each strut are shown in Figure 24, including
collapsing loads for the mathematical strut model, considered to be in direct
contact with the ground; the actual strut, as defined in Figure 18; and the
maximum crew compartment acceleration measured normal to earth.

—_ P (Pounds)
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- |
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3 |

- , 0.5 ft

Stroke (feet)
Six-Segment Heat Shield Concept
Collapsing
(P) Strut Loads (pounds) Maximum Crew

Vehicle | Vertical Compartment
Weight | Velocity Mathematical Acceleration
(pounds) (fps) Actual Strut Strut (g Normal to Earth)
10, 600 15 31,300 25, 000 14. 2
14, 000 15 41,300 33,000 14.2
14, 000 20 73, 600 58,785 25,2
14, 000 30 165, 200 131,950 56. 6

Figure 24. Load-Stroke Properties for the Legged Vehicle
With Six x-x Axis Struts

The strut loads used in the stability analyses of a 10,600-pound legged

vehicle resulted in total accelerations on the crew compartment which are

less than maximum allowable Apollo values shown in Figure 25.

For a

landing with 80 fps horizontal velocity toward a 5-degree upslope, 15 fps
vertical velocity, and angular attitude such that six legs contact simulta-

neously; the crew compartment will experience a 1%,2-g acceleration normal
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to the ground plane and an onset rate of 28.4 g/ft. For a 0. 35 coefficient of
friction, the total acceleration will be 15.0 g. The landing described above
has been found to result in the most severe accelerations. It represents the
condition of maximum normal velocity (22 fps) with all struts stroking
simultaneously. The strut properties of Figure 24 and a capsule weight of
10, 600 pounds have been assumed,

The strut loads assumed for the 14, 000-pound vehicle have been
linearly scaled up from those of the 10, 600-pound AES vehicle, Figure 24
tabulates strut loads and resulting crew compartment accelerations as
functions of the weights of the two different spacecraft., It will be noted from
Figure 24 that crew couch attenuators will be required for landings signifi-
cantly greater than 15 fps vertical velocity. The vertical velocity at which
crew tolerances will be exceeded (without couch attenuators) depends upon
the effective friction coefficient at impact. Figure 24 also assumes that strut
stroking length is the same for both vehicle weights.

Shock struts have been designed to satisfy (1) the landing stability
criteria; (2) space available for stowing them during flight and length required
to open the deployable legs upon landing; crew tolerance to acceleration and
onset rate without additional attenuation in the crew support system; and
(4) requirements to prevent damage to the permanent structure during landing,
Requirements 1, 2, and 3 determined the length, total strut stroke, and
maximum slope of the load-stroke curve, and these characteristics satisfy
requirement 4 since the struts were not sufficiently soft to permit the inner
structure to hit the ground under the worst landing conditions obtained with
Vy =15 fps and p= 0. 35,

To simplify the analysis, the same strut characteristics were used in
the analysis of effects of higher vertical velocities and coefficients of friction,
because although some advantages could be obtained from considering longer
strokes or softer struts, it was beyond the scope of this program to optimize
the strut design.

Stability of Segmented Heat Shield Concept

The stability envelopes derived in this study apply to both the MISDAS
and the AES spacecraft since strutloads (Figure 24)are linearly proportional
to vehicle weight,

The six-leg vehicle was found to be stable within the landing criteria
defined in the guidelines, constraints, and design criteria section, For a
vertical velocity less than or equal to 15 fps and coefficient of friction equal
to 0. 35, the vehicle showed good stability for various combinations of the
random variables, slope, slope direction, roll, chute swing angle, and chute
swing direction. The worst landing condition was for horizontal velocity
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toward a 5-degree downslope, roll = 0, direction of swing = 0, swing angle =
+12 degrees. Even under these conditions, the capsule only slightly exceeded
the initial 17-degree angle which the capsule's x axis made with a ground
normal.

A quantity called maximum tipping angle is mapped as a function of
vertical velocity and roll angle in Figure 26. This angle is the maximum
value in degrees that the capsule's x axis forms with a ground normal during
a landing. It should be noted that only one landing at 15 fps vertical velocity
or less had a maximum tipping angle greater than the initial impact angle
(17 degrees). Runs have been made at higher vertical velocity, resulting in
greater maximum tipping angles. The worst landings of these runs are at
approximately zero roll angle, with horizontal velocity toward downslope,
and capsule attitude such that a 17-degree angle (obtained by combination of
the most adverse slope, pitch or yaw, and parachute hang angle) is formed
by the ground plane and the capsule's y-z plane. Referring to Figure 26, an
unstable condition is achieved at a vertical velocity of approximately 25 fps.
The most severe landings with regard to strut stroking were made landing
upslope at 80 fps horizontal velocity. Upslope landings caused maximum
strut stroking, but had the net effect of stabilizing the spacecraft.

A study of the stability of the legged spacecraft at higher vertical
velocities and friction coefficients greater than 0. 35 has been accomplished.
The resulting information is shown in Figure 27. Lines cof constant vertical
velocity are mapped onto a plot of roll versus coefficient of friction. This
plot indicates that stable landings can be made for coefficients of up to
approximately 1. 0 if the roll angle of the spacecraft can be controlled. With
roll = 180 deg #45 deg and positive pitch relative to the ground plane (or
roll - 0 deg +45 deg and negative pitch), stable landings are indicated. Note
that roll angle is measured from the horizontal velocity to the vertical plane
containing the capsule's z axis,

MASS PROPERTIES

The weight increase assessment for adding the six-legged Mechanical
Impact System to the Apollo-type Advanced Spacecraft consists of the weight
of the landing gear system plus the effects of all modifications required on
the aft heat shield and inner structure.

Apollo Block II weight and mass properties information presented in
Reference 8 was used as a base point for all calculations; weight changes due
to structural modifications of aft heat shield and inner structure are based on
details of Figures 18 and 19, and the stress analysis presented in Appendix A
for a vertical velocity of 15 fps and ground coefficient of friction p = 0. 35,
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Figure 26,

Stability Limits for Six-ILeg Vehicle
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Figure 27. Stability of Legged Vehicle as a Function of Roll (Deg) Versus
Coefficient of Friction (K)
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Table 6 presents a detailed weight breakdown of the six-legged heat
shield MISDAS concept. Weight of heat shield and permanent structure com-
ponents affected by MISDAS installation are shown in Table 7 for the Advanced
Spacecraft and the basic Apollo Block II vehicle.

The net weight penalty imposed by MISDAS six-legged system to the
14, 000-pound spacecraft landing with vertical velocity of up to 15 fps on
ground with coefficient of friction of up to 0. 35 is 673 pounds, or 4.81 percent
of the spacecraft weight,

Volume required to install the six-segment system in the aft equipment
bay was assessed. This volume includes the space required for storage and
operation of the system. Total volume penalty imposed by a system designed
to sustain landings with vertical velocity of up to 15 fps and ground coefficient
of friction pn=0,351is 2,8 cu ft,

Tables 6 and 7 show the increased weight and volumes of landing system
and structural components redesigned to sustain land landings of increased
sinking velocity. Calculations leading to these values have been based on
the structural drawings (Figures 18 to 19)and the stress analysis presented
in Appendix A,

MANUFACTURING CONSIDERATIONS

This section presents a manufacturing plan for the six-legged landing
system shown in Figures 18, 19 and 20. Although the overall landing system
configuration shown in the drawings has been retained, a limited number of
structural details have been modified to enhance the producibility of the
installation. These changes have been incorporated in the structural analysis,
The pictorial manufacturing plan shown in Figure 28 illustrates a sequence
of assembly to produce the finished landing system hardware utilizing current
state-of-the-art techniques and many of the existing Apollo tools.

Aft Heat Shield Fabrication

Although the aft heat shield from which the six landing legs deploy is
similar in appearance to the present Apollo aft heat shield, all details of this
assembly should be considered new. The new assembly will still bolt to the
bottom of the inner crew compartment and provide a seal with the inner crew
compartment heat shield at the mold line surface.

As shown in Figure 28, the center section of the aft heat shield has been
divided into six segments, rather than one full honeycomb panel braze assem-
bly with unpredictable faying surface braze joints. From past experience,
reliability of faying surface braze joints in brazed sandwich panels has been
questionable., On the other hand, the reduction of faying surface braze joints
results in smaller panel sizes, imposing additional {fusion weld requirements.
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Weight (1b)

SID 66-409

k= 0.35
Item V, = 15 fps V, = 20 fps V, =30 fps
Structural modification -126.0 +11.0 +436.0
Landing gear system (799.0) (1,233,0) (1,970.0)
Leg assembly (447.0) (636.0) (897.0)
Skin 165.0 182.0 215.0
Stiffeners 157.0 265.0 374.0
Edge members 76,0 119.0 184.0
Hinge fittings 24,0 36.0 73.0
Strut attachment 21.5 28.0 39.0
fittings
Hardware 3.5 6.0 12.0
Frame-leg support 132, 0 257.0 410.0
Shock strut assembly (161.0) (250. 0) (486. 0)
Struts (6) 112, 0 178.0 370.0
Attachment fittings - 42.0 63.0 101.0
sidewall
Conical bellows 3.0 3.0 3.0
Hardware .0 6.0 12.0
Hydraulic and pneumatic (52.0) (83. 0) (170. 0)
system
Hydraulic accumulator 12. 5 20.0 44,0
Motor valve 2.0 2.0 2.0
Valves 0.5 0.5 0.5
Damping orifices 1.0 1.0 1.0
Plumbing A 7.0 10.0 16.0
Electrical provisions 2.5 2.5 2.5
Support and attaching 1.5 2.0 4.0
parts
Hydraulic fluid 24.0 44,0 99.0
Gas (helium) 1.0 1.0 1.0
Leg release mechanism 7.0 7.0 7.0
Total mechanical landing 673,0 1,244.0 2,406.0
system penalty
Total volume allotment 2.8 3.6 5.8
(~cu ft)
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Table 7. MISDAS Segmented Heat Shield Concept Structural Modification
‘ Weight Breakdown
Weight (1b)
Base Point
Apollo pr= 0.35
Block II
Item (9165) Vy = 151fps | V,, = 20 fps | V,, = 30 fps
Aft heat shield (763. 3) (622. 3) (721. 3) (942. 3)
structure
Honeycomb panel (559. 6) (414. 5) (513. 5) (734. 5)
Core 202, 9 160.0 176.0 188.0
Face sheets 306. 6 203, 5 286.5 495. 5
Braze 51.1 51.0 51.0 51.0
Frames and rings
Ring-outer rim 55,1
Body to heat shield 55.9 37.0 37.0 37.0
attachment
. Fitting and 33.0 33.0 33.0 33.0
attachment
Closeouts 7.1 21.0 21,0 21.0
Toroidal assembly (52.6) (116. 8) (116. 8) (116, 8)
Corrugation 16,6 28.0 28.0 28.0
Skin ‘ 17.7 22.5 22.5 22.5
Splice and attach 18.3 22.3 23.3 23,3
Rim 44,0 44.0 44.0
Inner structurée - aft (177.0) (192, 0) (230. 0) (434. 0)
section
Honeycomb panels 122,0 137.0 167.0 344, 0
Girth ring 55.0 55. 0 63.0 90.0
Total 940, 3 814.3 951.3 1,376, 3
Total structural -126.0 +11.0 +436. 0
modification
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Although the more reliable panel configuration is recommended, fabrication
development of the one-piece center section braze assembly, including the
landing leg stiffening ring member, is feasible.

As proposed in Figure 28, each of the six pie-shaped center section
segments consists of one honeycomb panel braze assembly and one stiffening
ring weldment, All assemblies are compound contoured. Two formed chem-
milled face sheets and one 2-inch thick honeycomb core comprise the braze
assembly., The panel will be fabricated with extra material around the
periphery for subsequent trimming operations. Each weld assembly consists
of one modified "I'"' beam main ring member, two hinge support members,
and one rolled closure which forms the outer side of the box section between
the two hinge supports. All details will be heat-treated before welding into an
assembly. The ring section will be machined in the heat-treated condition.
Additional material will be provided on the weldments for subsequent trim-
ming operations,

To complete the pie-shaped center section segment assembly, the
honeycomb panels must first be prepared for welding to the ring member
weldments. This is accomplished by the removal of a small portion of the
core and the brazing alloy deposit from both face sheets in the area to be
welded. The honeycomb panel and weldment must then be match trimmed
before subsequent tacking and simultaneous butt fusion welding of the upper
and lower surfaces. Progressively, three of these panels can be welded
together to form each half of the heat shield center section assembly. Sub-
sequent welding of two center section halves and welding of closures to the
ring member between the hinge supports at each of the six weld joints will
complete the inner heat shield assembly.

The brazed honeycomb panels, located outboard of the center section
and inboard of the corrugated heat shield structure would be the next panels
to be welded to the center section assembly, Three different panel config-
urations must be used. A 1.5-inch thick honeycomb panel is located in the
area of the six landing leg wells and between the hinges. A 1/2-inch thick
panel is located outboard of this panel. These two panels, when welded in
place, form the landing leg well cavity. The third panel configuration is
2 inches thick and occupies the area between the landing leg wells. All panel
edge members will be welded to the braze assemblies after the braze
operation, Panel preparation and edge member installation at the outboard
panel edges will be defferred until all welding on the heat shield has been
completed.

The sequence in which these outboard panels are welded to the center
section main box structure, and to one another, is very critical. The assem-
bly must be analyzed to determine a logical order to minimize weld shrinkage
problems. It may be necessary to simulate the landing leg assembly with
tooling to ensure proper location for each honeycomt panel. As shown in
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Figure 28 the two panels in the landing leg well area are welded together first
to eliminate areas of weld shrink entrapment. Progressively, and in proper
sequence, each honeycomb panel must be trimmed and welded into place.

Subsequent fabrication operations outboard of the honeycomb panel

welded heat shield structure can follow procedures similar to those
established for the Apollo aft heat shield assembly. The outboard panel edges

will be trimmed and de-cored, and closeouts riveted in place. Corrugated
panel subassemblies will be riveted to the panel closeouts, and the termi-
nating seal ringmember will be installed by riveting to the upper edge of the
corrugated panels, All of these rivet operations, and the subsequent drilling
of attach holes through the heat shield assembly, can be accomplished with
existing Apollo tools.

Landing Leg Segment Fabrication

Because installation of the landing leg assemblies onto the aft heat
shield will be the next operation performed, fabrication of the landing leg
assemblies will be briefly discussed at this time. The assemblies shown in
Figure 18 are designed as riveted, stiffened skin structures of PH 14-8 Mo
corrosion resistant steel or equivalent. One "Y' shaped inner channel stif-
fener, one inboard and two side channel edge members, one outboard seal
member, two hinge fittings, one strut attach fitting, one mold line skin, and
eight angle stiffeners comprise the details required to fabricate each landing
leg assembly. The most rigid and difficult member to form will be the "Y"
shaped inner channel stiffener. To facilitate forming on drop hammer dies,
this detail has been designed in two picces with one weld toward the outboard
end.

Progressive dies will be used to arrive at the final configuration. All
forming and welding will be accomplished with material in the annealed con-
dition, with subsequent heat treatment, straightening, and heat aging.

Each landing leg assembly can be fabricated in two stages as illustrated
in Figure 28. Both of the hinge fittings and the one strut attach fitting will
first be riveted to the '"Y'' channel utilizing an assembly fixture to hold each
fitting in the proper location. Riveting of the outer mold line skin, panel
edge members, and angle stiffeners to the initial internal assembly structure
will complete the landing leg assembly.

Landing Leg System Installation

With the heat shield assembly in an inverted position, each landing leg
assembly will be custom fitted to one of the landing leg wells. The two
outboard explosive retainers for each landing leg assembly can also be
temporarily installed, or simulated at this time, in order that mold line
smoothness can be obtained. Bolting of the landing legs in stowed position
will be required for the next operations.
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Fit check will still include bolting to the inner crew compartment and
checking the interface of all mating components, Assuming the actuator
brackets have previously been installed on the inner crew compartment,
installation of the hydraulic cylinders will make it possible to check stroke
clearance during deployment fit check of the landing leg assemblies. All
structural work on the aft heat shield will be completed during this fit check
operation. Upon completion of fit check, the aft heat shield, with landing
legs again bolted in stowed position, will be removed from the inner crew
compartment assembly in preparation for the installation of the ablator.

Ablator Installation

Ablator installation procedures will be basically similar to those now
used on the existing Apollo aft heat shield. Honeycomb core will be bonded
to the basic heat shield structures, followed by injection of the ablator into
the core, and final grinding to the mold line configuration, Ablative applica-
tion procedures similar to those used for Apollo heat shield access panels
are employed where '"no-bond'' members must be installed around the
periphery of each landing leg assembly to allow proper deployment, In
addition, ablative failure plugs, also surrounded with "no-bond' members,
are required in the area of the landing leg hinge arms. These plugs will be
removable for checkout of the entire landing system upon completion of the
ablator installation. Although some development work is anticipated for
these areas containing ablative separation requirements, AVCO, fabricator
of the Apollo ablative heat shield, considers the concept feasible.

Installation on Crew Compartment Structure

Final installation of the aft heat shield on the inner crew compartment
should require no additional structural effort, because of the initial fit-check
operation., After being bolted to the inner crew compartment, the attenuation
struts and lines can be connected for a landing system checkout. This will
be done with the ablative failure plugs removed from beneath each of the
landing leg hinge arms. After the deployment checkout, the landing legs will
be secured in stowed position with the explosive retainer nuts and failure
plugs replaced. The last operation will be the final attachment of the bellows
between the attenuator struts and landing leg assemblies.
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EVALUATION OF RADIAL SKID CONCEPT

The design of this system encompasses the use of a deployable aft heat
shield and a series of radially extendable landing skids to prevent overturning
of the command module. For the specified range of landing attititudes given
in the Guidelines, Constraints, and Design Criteria section, the skids do not
contact the ground at initial impact,. They do make contact when the space-
craft tends to tip over, and prevent its overturning. The forces applied to
the spacecraft at landing impact are attenuated by shock absorbers located
between the deployable heat shield and the inner body structure. The hori-
zontal forces are absorbed by friction of the heat shield sliding over an
unprepared landing surface.

Functionally, this system design is very similar to Concept B previously
discussed in Reference 1, Specifically, it differs in the parachute hang angle,
number of attenuators used for vertical forces, the deployed length of the
radial skids, and the incorporation of folding braces to resist the lateral
loads due to the friction on the heat shield.

A reevaluation of the original design has shown that a significant weight
reduction can be made in the impact attenuation and skid structure while
satisfying the established design criteria summarized in the Guidelines,
Constraints, and Design Criteria section,

STRUCTURAL SYSTEM DESCRIPTION (FIGURES 29 and 30)

The structural hardware of this concept consists of a command module
heat shield modified to include 12 lightweight rectangular steel tubes within
individual rectangular housings. An inner and an outer support ring complete
the primary framing of the honeycomb heat shield. A series of tension studs
and separation nuts in the same location as the Apollo tension bolts attach
the heat shield to the inner body. Also attached to the heat shield are six
combination actuator/attenuator struts located in the vertical plane at
60-degree intervals. The aft end of each shock absorber is attached to the
heat shield outer support ring, while the forward rod end is connected to the
inner body support. This forward end incorporates a threaded adjustment
for final position length., Spherical bearings in both ends provide compensa-
tion for angular misalignment. Heat shield inner body lateral movement or
horizontal rotation is resisted by six folding braces (torque scissors) between
the inner body supports and the outer support ring, located directly below
the six shock absorbers.
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SYSTEM OPERATION

Sequentially, the deployment of the landing impact system follows the
landing signal, with the release of the heat shield tension tie. An electrically
initiated set of squibs within the separation nuts activates a structural Pyro-
fuze insert by high temperature which releases the tension study. A
pressure-charged hydraulic accumulator is then activated to pressurize and
extend the shock absorber struts. The accumulator maintains pressure in
the shock struts, permitting them to absorb impact energy by flow of oil
through the damping orifices. In sequence or concurrent with the heat shield
extension, electrically initiated squibs activate the pyrotechnic thrusters in
the skids and propel them radially through the skid housings. The skids are
stopped and locked in their extended position with sufficient overlap provided
for socket action to resist the bending moment from the loads on the outer
portion of the skid during landing. Associated electronic and mechanical
units complete the systems and integrate the sequencing sections into a
highly reliable and efficient ground landing system. Components similar to
those used for airplane bomb, tank and pylon jettison systems and canopy and
seat ejection could be developed for the skid extension. Thus, the concept is
considered technically feasible.

SPACECRAFT COMPATIBILITY

The command module inner body will require modifications to accom-
modate the landing impact system. A number of systems and associated
components within the aft heat shield compartment as identified on page 81
will require relocation and refitting for space and operating accommodations.
The additional support structure will have to be added and located on the
outer walls of the inner body for structural continuity, The tension ties
between the command module and service module do not require structural
redesign. Minor modifications to equipment and fittings in the reduced
clearance space between the command module floor structure and heat
shield may be required. These changes have been described in Reference 2.

PACKAGING CONSIDERATIONS

Figure 31 illustrates a packaging arrangement of the four retromotors
required to attain the desired vertical landing velocities, the subsystem
components, the torque links, and skid deployment cylinders in the aft
equipment bay. The twelve radial skid assemblies are positioned symmetric-
ally in the aft heat shield with the plane of two skids on the Zc-axis. The
structural and mechanical details of the deployment system for the radial
skid deployable heat shield concept are shown in Figure 29, The four
retromotors are unsymmetrically located 28 and 40 degrees either side of
the +Zc-axis and 22 degrees either side of the -Zc-axis,
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Installation of the four retromotors, shock struts, and torque links
in the aft compartment equipment bay of the command module will require
the following relocation of subsystems and aft compartment frames:

1. The uprighting system compressor and the helium tank
between Frames 1 and 2, and the RCS switches were
repositioned between Frames 19 and 20 to allow space for
installation of the structural and mechanical details of the
skid deployment system between Frames 2 and 3.

2. The oxidizer tanks, waste water tanks, and fuel tanks
between Frames 4 and 11 must be repositioned between
Frames 3 and 4 and between Frames 19 and 20 to
accommodate the installation of the structural and
mechanical details of the skid deployment system between
Frames 5 and 6 and between Frames 10 and 11.

3. The structural and mechanical details of the skid deploy-
ment system located at Frames 15 and 22 require redesign
and modification of the roll RCS engine support structure.
The steam vent requires repositioning to a location between
Frames 17 and 18.

4., The pitch engines between Frames 18 and 19 must be
repositioned due to the structural and mechanical details
of the skid deployment system located in this area.

5. The aft compartment Frames 5, 7, 17, and 20 must be
redesigned to accommodate installation of the retro-
motors located at these positions.

6. The electrical umbilical may require rearrangement to
be compatible with the modifications previously noted.
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STRUCTURAL ANALYSIS - RADIAL SKID CONCEPT

To verify the technical feasibility of the radial skid concept
installation in a 14, 000 1b vehicle for an impact velocity of 15 fps, stress
and deflection analyses were performed. Stress calculations were also
performed to determine the effect of vertical velocities of 20 and 30 fps on
MISDAS structural design. These analyses included studies of the principal
components of the impact attenuation system, the aft heat shield, and affected
portions of the command module inner structure. For the 15 fps impact
velocity, structural and deflection analyses have been performed which
establish the sizes of the principal components of the impact system and
establishes the structural integrity of the command module inner structure.
The analyses are based on Figures 29 and 30, using the design criteria
specified in the Guidelines, Constraints, and Design Criteria section. The
primary load paths are shown in Figure 32, and the principal results are
summarized in Table 8. The complete stress analysis is presented in
Appendix A. The materials considered and their structural properties are
discussed in Appendix B. The major aspects of the structural study are
discussed in the following paragraphs.‘

Critical Conditions

The critical design conditions are ground impact, skid contact, water
impact, and boost abort. The ground impact condition requirements are
critical for the shock struts and their attachment fittings to the inner
structure, Skid contact loads design the aft heat shield inner ring at 34-inch
radius, the skid housing, the skids, and the Lox ring at 71-inch radius.

The skid contact loading condition occurs when the spacecraft rocks suffi-
ciently for the deployed skid to touch the ground. The water impact condition
is critical for the design of the aft heat shield honeycomb panels within a
58-inch radius. The boost abort load designs the attachment of the aft heat
shield to the inner structure.

Assumptions

The design was based on the loads and criteria given in the Apollo
Requirements Manual ARM-6 (Reference 6) with the following exceptions.
The water impact condition was limited to consideration of 15 fps impact
velocity for a vehicle weight of 14, 000 pounds. The ground impact con-
dition was based on a shock strut load derived from the dynamic analysis.
The skid contact condition was taken as a one-g load acting at the end of
the skid, with two skids in contact with the ground and the load distributed
over 8 inches of the skid.
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The following factors were applied to the design limit loads to
establish the ultimate load to be considered:

1. Ground impact
All structure: 1, 33
2, Skid contact
Skids: 1,00
All other structure: 1,33
3. Water impact
All structure: 1,00
The aft heat shield and skids were analyzed for a temperature of 600 F
and the inner structure for a temperature of 200 F, These values are the
maximum temperatures used for the Apollo analysis, The value of 600 F is

conservative in that it is the maximum temperature expected at the ablator -
heat shield interface.

Principal Results and Conclusions

For this concept, the hoop continuity and overall stiffness of the
Apollo heat shield substructure is retained; therefore, the ability of the
structure to support flight loads is not affected by the introduction of the
skid housings. It should be noted, that the increase in the vehicle weight
causes a proportionate increase in entry loads. With the heat shield
deployed, all loads are reacted at the six strut attachment points. To dis-
tribute the resulting concentrated loads at these six points, a box section
ring has been added to the structure forward of the inner face sheet at a
71 -inch radius. The radial skid housings are designed to react the skid
loads, to distribute these loads into the structure, and to be sufficiently stiff
to replace the heat shield material removed to accommodate their installation.

The 12 extendible skids are subject to ground contact loads when the
vehicle tips over. These loads are carried in bending to the skids housings
welded into the heat shield and supported by the inboard and outboard rings.
The outboard ring picks up the six shock struts which transfer the load to the
command module inner structure aft sidewall.
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In the retracted position, the aft heat shield is bolted to the inner
structure at the aft bulkhead ring with 24 Pyrofuze bolts. These bolts carry
the tension loads that occur at this interface. The lateral shear is taken by
59 studs in the aft bulkhead ring. With the aft heat shield deployed at the
time of impact, the vertical loads to which it is subjected are transmitted
to the inner structure by the shock struts. A linkage is provided to carry
the lateral loads on the aft heat shield to the inner structure. The forward
end of the shock strut is attached to a fitting which introduces the loads to
the inner structure aft sidewall. For the 15 fps impact velocities con-
sidered, this fitting is bolted to the girth ring and the aft bulkhead ring, and
is bonded to the aft sidewall skin. The aft sidewall skin then reacts the
vertical component of the shock strut load in shear, The radial component
of the shock strut load is carried in bending by the fitting and is reacted by
the rings. The results of this analysis are given in Table 8.

Effects of Impact Velocities of 20 and 30 fps

The increased impact velocities have no effect on those items of the
aft heat shield substructure which are designed by the skid contact condition,
with the exception of the shock strut support ring at 71-inches radius. The
increased ring section required for ground impact velocities of 20 and 30 fps
are shown in sketches onPages 5.1 and 5.7 of Appendix A,

The water impact condition determines the skin thickness of the aft
heat shield. A comparison of the skins required for the different velocities
is given as follows:

Velocity Skin Gauge
(fps) (in.)
15 70.016 to 0. 036
20 0. 014 to 0, 049
30 0. 023 to 0. 054

Sketches showing the skin profile for the different velocities are
given on Pages 3.2, 5.6, and 5.13 of Appendix A,

No design changes are required for the descent velocity of 20 fps. The
increase in load can be supported by increasing the shock strut support fitting,
and by using a thicker aft side wall skin as shown on Page 5.4 of the calcu-
lations. To accommodate a descent velocity of 30 fps, extensive changes to
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the aft portion of the inner structure would be required in the manner
suggested for the higher velocities on the segmented heat shield concept.
The vertical reaction of the shock struts requires a longeron welded into
the basic weldment of the inner structure for each shock strut fitting, A
sketch of this longeron and the method of attaching the shock strut fitting is
shown on Page 5.10 of Appendix A. The skin gauge, all weld lands between
skins and longerons, and weld lands between skins and rings would require
increased thicknesses to support time resulting shear. None of the shear is
assumed to be distributed into the forward sidewall of the inner structure
with the result that the sizes given on Page 5. 11 of Appendix A is slightly
conservative. The girth ring at station Xe 43 in its present form cannot
support the radial component of the shock strut load and would require an
increase in its bending capability for the critical section in the area of the
main access hatch. The magnitude of the change required is shown on
Page 5.12 of Appendix A,

The results of the stress calculations are given in Tables 9 and 10.

LANDING STABILITY ANALYSIS

The stability characteristics of the vehicle with deployed heat shield
and extended skids were determined through the use of 6D@F, a versatile
FORTRAN IV computer program used for solution of Apollo-type vehicle
impact dynamics. 6D@F uses a mathematical model of an Apollo-type two-
body spacecraft-heat shield and hull. When initial landing parameters are
loaded, the program simulates the dynamics in three dimensions of a real
spacecraft making an earth landing. The action of the ground on the deployed
heat shield produces forces on the heat shield struts. The struts then act to
apply forces and torques to the spacecraft itself. The 6 D§F program is des-
cribed in report SID 66-279, presented as Appendix D of this report.

The laws of motion are integrated using small time increments to
produce linear and angular acceleration, velocity, and displacement time
histories of the deployed heat shield and the pressure hull.

Use of the NAA system computing feature (DECRD) allows for a very
flexible input sequencing which makes this program particularly useful in
parametric studies. Loading time for the object deck is about 30 seconds;
computing time per landing case is on the order of 60 seconds,

The geometry of essential points on the spacecraft is described by the
coordinates of each point in a coordinate system fixed to the spacecraft
(capsule initial system), Important points, such as center of gravity, struts
ends, etc., are located by loading in their coordinates. Up to eight massless
struts are allowed and each may have different stroking properties, The
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struts are the only connecting elements between the pressure hull (crew
compartment) and the deployed heat shield and they are assumed to be
pin-ended. The analysis is based on the following assumptions on spacecraft
and ground properties.

The properties of each strut must be expressible as a load-stroke
curve that can be formed by a series of straight lines. Plastic deformation
is the principal strut property, but provisions are made for inclusion of
elasticity and frictional properties. The struts are considered to be
massless.

The ground is considered as a rigid plane that has a constant friction
coefficient with the heat shield. The ground may have a slope and direction
of slope.

The crew compartment, or hull, is considered as a rigid mass. The
heat shield is considered to have mass and to have plastic and elastic pro-
perties which can be expressed as a load-deflection curve as in the case of
the strut properties. Coordinates of 73 points on the heat shield are loaded
to define its shape. All deflections of the heat shield are taken as normal to
the ground plane. It should be noted that the load-deflection properties of
the heat shield effectively include both ground and heat shield properties.
These properties were obtained by successively varying heat shield data so
that results from 6 D@F agreed with accelerometer data from Apollo boiler -
plate drop tests. These heat shield properties, as given in Appendix D,
were not obtained analytically or by directly measuring load-deflection
properties of the heat shield,

A partial list of input data to the program includes:
1. Acceleration of gravity

2. Coordinates of cg

3. Mass properties of hull and heat shield

4. Coordinates of strut e'nds

5. Load-stroke properties of struts

6. Coordinates of heat-shield defining points

7. Load-deflection properties of heat shield points
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Initial value (landing parameter) data include:
1. Horizontal and vertical velocities

2. Roll, pitch, and yaw

3. Angular veloc;ities

4. Ground slope and direction of slope

5. Friction coefficient with ground

The program's output is primarily in the form of CRT plotting. Time
histories are plotted from the instant of impact for the following quantities:

1. Acceleration, velocity, and displacement of the heat shield cg in
a direction normal to the earth

2. Roll, pitch, and yaw measured relative to the earth (earth y-z
coordinate axes form plane of ground)

3. Acceleration, velocity, and displacement of the hull are given
relative to the heat shield

4. Stroke of each strut (versus time)

Angle Conventions

Angle conventions for the radial skid system are as discussed below:
The vehicle is first rolled about its vertical axis, then pitched about its y
axis, then yawed about the z axis on the capsule. The roll angle is always
measured as the counterclockwise angle from the horizontal velocity to the
vertical plane that contains the capsule z axis. The net pitch angle is
measured as the upward angle from the horizontal plane to the capsule z axis
(Figure 33). The ground slope is defined by a maximum slope and a direction
of upslope. The direction of upslope is measured in a counterclockwise
angle (right-hand rule) from the horizontal velocity. Positive slope is
upslope. Horizontal and vertical velocity always form the basic reference
plane.
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Figure 33. MISDAS Land Landing Attitude, Deployable
Heat Shield System

Landing Stability Considerations

Landing stability of the 14, 000-pound vehicle has been studied under a
variety of conditions, including the increased vertical velocities of 20 and 30
fps, and ground coefficients of friction of 0.35 to 1.0, and above. These
analyses have been based on those performed for the AES application, with
strut loads directly scaled from those used with the 10, 600 -pound vehicle
(Reference 2). Because the computer program is limited to a total of eight
struts four horizontal and four vertical struts have been considered.
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The initial locations of the ends of the eight struts used for the capsule
initial system are indicated in the following table.

Strut No. 1 2 3 4 5 6 7 8
x[18.25| 18.25 | 18.25|18.25 | 18.25|18.25| 18.25 | 18.25
Heat shield y | 0 -73.0 0 73.0 [-73.0 |73.0 [-73.0 | 73.0
z |73.0 0 -73.0 | 0 0 0 0 0
x(46.0 | 46.0 | 46.0 |46.0 | 18.25(18.25| 18.25 | 18.25
Capsule y| 0 -61,0 0 61.0 0 0 0 0
z [61.0 0 61.0 | 0 73.0 |73.0 |-73.0 [-73.0

The vertical struts used the force-stroke function given in Figure 33 for
compression. To retain the heat shield to the capsule in other attitudes,
dummy coloumb friction forces were added to the vertical struts in tension
and to the lateral struts in both directions. The axial forces were

14,900 pounds for each of the four vertical struts, and 55, 000 pounds per
lateral strut for the 10, 600-pound vehicle landing at 15 fps on a ground with
a coefficient of friction p = 0.35, Thus, the strut loads in the actual con-
figuration with six vertical struts was 23, 000 pounds per vertical strut.

Loads for the 14, 000-pound spacecraft were scaled directly from these
values and are shown in Figure 34. The resulting crew compartment
accelerations shown in Figure 34 indicate that for vertical velocities above
15 fps, crew couch attenuators will be required. The vertical velocity at
which crew tolerances will be exceeded depends on the effective ground
friction coefficient at impact.

Results of Stability Analysis

Stability envelopes derived in this phase have been obtained by linearly
scaling strut loads to vehicle weight from those used in the AES application
for the 10, 600-pound vehicle.

For landing conditions consistent with the design criteria presented in
the Guidelines, Constraints, and Design Criteria Section, this vehicle
showed good stability. The landings that were most nearly unstable for
horizontal velocity were directed downslope. Figure 35 shows the maximum
tipping angles mapped as a function of vertical velocity and roll angle. The
figure shows that a maximum tipping angle of 40 degrees will be reached
when landing at 15-fps vertical velocity, down a 5-degree slope, zero-degree
direction of swing, and 12-degree swing angle. This landing is the worst
obtained for vertical velocities of 15 fps or less.
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P (pounds)

0

5 I

2 I

9 I

<

Q

- |

0.5 ft
Stroke (ft)
Radial Skid Concept
Collapsing Max Crew
Load P Collapsing Compartment

Vehicle Vertical (Mathematical Load of Acceleration
Weight : Velocity Strut) Actual Strut (g normal
(pounds) (fps) (pounds) (pounds) to earth)
10, 600 15 34,900 23,300 17.0
14, 000 15 46,130 30, 756 17.0
14,000 20 82,120 54, 746 30.3
14,000 30 184, 540 123, 024 68.0

Figure 34. Mathematical Load-Stroke Properties for the Radial Skid
System With Four X-X Axis Struts

Landings upslope tend to stabilize the capsule, but lead to greater strut
stroking. The landing at Vi = 80 fps and Vy = 15 fps is a severe case since
the struts previously described for this concept will be stroked in such a way
that the heat shield will be closed on one side after impact. Stiffer struts
will be required for vertical velocities above 15 fps.

Load-~stroke characteristics of the struts used in the analysis have
been derived to satisfy requirements of landing stability criteria, capsule
geometry constraints, crew acceleration and onset rate tolerances, and
protection of permanent structure from damage on landing. The single
stroke that satisfies these requirements was chosen and used for the
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Figure 35, Stability Limits for Deployed-Heat-Shielu=With-Skids Vehicle
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analysis. The characteristics of longer and softer struts and their advan-
tages and disadvantages have not been investigated but are considered an
interesting subject for future studies.

A study of the stability of the skid system spacecraft at higher vertical
velocities and friction coefficients greater than 0.35 has been accomplished.
The resulting information is shown in Figure 36. Constant lines of vertical
velocity are mapped onto a plot of roll versus coefficient of friction. This
plot indicates that stable landings could be made for coefficients of friction
greater than 1.0 if the roll angle of the spacecraft could be controlled. With

roll = 180+45 degrees and positive pitch relative to the ground plane (or
roll = 0£45 degrees and negative pitch), stable landings are indicated. It
should be noted that roll angle is measured from the horizontal velocity to
the vertical plane that contains the capsule z axis.

Mass Properties

The weight penalty for adding the radial skid MISDAS system to the
Apollo advanced spacecraft consists of the landing gear system weight plus
the effects of all modifications required on the aft heat shield and inner
structure.

Apollo Block II weight and mass properties information presented in
Reference 8 was used as a base point for all calculations; weight changes due
to structural modifications of the aft heat shield and inner structure are
based on details of Figures 29 and 30, and the stress analysis presented in
Appendix A for a landing vertical velocity of 15 fps and 0. 35 ground coef-
ficient of friction.

Table 11 presents a detailed weight breakdown of the radial skid
MISDAS concept. The weight of heat shield and inner structure components
affected by MISDAS installation is shown in Table 12 for the advanced space-
craft and for the basic Apollo Block II vehicle.

The net weight penalty imposed by the MISDAS radial skid system to
the 14, 000-pound spacecraft landing on ground with a vertical velocity of up
to 15 fps and a coefficient of friction of up to p = 0.35 is 955 pounds or
6. 82 percent of the landing weight.

The volume requirements of MISDAS installation in the spacecraft aft
equipment bay was also assessed. This volume includes the space required
by the stored mechanisms and their operation. The total volume required by
the radial skid system for landings with sinking velocity of up to 15 fps and
B =0.351is 3.5 cubic feet.
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Figure 36. Stability of Skid System Vehicle as a Function of'Roll (Deg) and
Coefficient of Friction {(K)
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Table 11. MISDAS Deployable Heat Shield/Radially Extended
Skid Concept Detail Weight Breakdown
Weight (1b)
K= 0,35
Item Vy=151ps | Vy =20fps | Vy = 30 fps

Structural modification -162.0 -71.0 +261,0

Landing gear assembly (1117, 0) (1237.0) (1965. 0)

Skin assembly (633, 0) (633.0) (633.0)

Skid housing (12) 303.0 303. 0 303.0

Skids (12) 272.0 272, 0 272.0

Inner ring 17.0 17.0 17.0

Skid extension device 41.0 41,0 41.0

Ring, outer support 300.0 341,0 770.0

Shock strut assembly (150, 0) (221. 0) (473, 0)

Struts (6) 75.0 105, 0 244.0

Lateral supports 30.0 54,0 97.0

Attach fitting - sidewall 40,0 54,0 117, 0

Hardware 5.0 8.0 15.0

Hydraulic and pneumatic system (34. 0) (42.0) (89.0)

Hydraulic accumulator 6.0 8.5 22.0

Motor valve 2,0 2.0 2.0

Valves .5 .5 .5

Dampning orifices 1.0 1.0 1.0

Plumbing 7.0 7.0 10.0

Electrical provision 2.5 2.5 2.5

Support and attaching parts 1.5 1.5 2.0

Hydraulic fluid 13.0 19.0 48,0

Gas (helium) .5 .5 1.0

Total mechanical landing system 955, 0 1166.0 2226.0
penalty

Total volume allotment ( cu ft) 3.5 5.3 7.6
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Table 12. MISDAS Deployable Heat Shield/Radially Extended Skid Concept
Structural Modification Weight Breakdown

Weight (1b)

Base Point
Apollo Kk =0,35
Blk II
Item (9/65) Vv = 15 fps| Vy = 20 fps | V\,= 30 fps
Aft heat shield structure (763, 3) (598. 3) (666, 3) (860, 3)
Honeycomb panel (559. 6) (392. 0) (460. 0) (654. 0)
Core 202.9 157.0 165.0 181.0
Face sheets 305.6 190.0 250.0 428.0
Braze 51.1 45.0 45,0 45,0
Frames and rings
Ring outer rim 55,1 55,1 55.1 55,1
Body to heat shield 55.9 56.0 56,0 56,0
attachment
Fitting and attachment (33.0) 33.0 33.0 33.0
Closeouts 7.1 10.0 10.0 10.0
Toroidal assembly (52.6) (52.2) (52.2) (52.2)
Corrugation 16.6 15,0 15.0 15,0
Skin 17,7 16.0 16.0 16,0
Splice and 18.3 21.2 21.2 21,2
attachment
Inner structure - aft (177, 0) (180. 0) (203.0) (341, 0)
section
Honeycomb panels 122.0 125.,0 148.0 261,0
Girth ring 55.0 55,0 55,0 80.0
Total 940, 3 778.3 869. 3 1201.3
Total structural -162.0 -71.0 +261.,0
modification
- 99 -
SID 66-409




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION *

2600
2400 |—

2200 — o
2000 }—

1800 |—

1600 }—

1400 —

1200 b— 8

1000 —

WEIGHT PENALTY (POUNDS)

800 —
AES APPLICATION
600 —

400 }— DEPLOYABLE HEATSHIELD CONCEPT O===0O
SEGMENTED HEATSHIELD CONCEPT Qemmp

200 —

0 | | | |

10 15 20 25 30 35
VERTICAL DESCENT RATE (FPS)
Figure 37. Weight Penalty Vs Vertical Descent Rate for MISDAS
Mechanical Landing System

Tables 11 and 12 show the increase in radial skid MISDAS weight
penalty due to system redesign to sustain increased vertical velocity landings.
Values were obtained from calculations based on preliminary design drawings
(Figures 29 and 30) and the stress analysis presented in Appendix A. Weight
trends for both the radial skid and six-legged heat shield systems are com-
pared in Figure 37, which also shows, for purposes of comparison, the weight
penalty associated with MISDAS application to an AES-type spacecraft
(Reference 2).

MANUFACTURING CONSIDERATIONS

The manufacturing requirements study has emphasized the utilization
of the Apollo tooling and fabrication techniques as much as possible. The
changes on the crew compartment are comparatively minor. In general,
these include installation of additional items, such as the actuators and
support bracketry. Manufacturing considerations placed few constraints on
the aft heat shield basic engineering design. Minor changes were made in
some areas to improve the producibility aspects. The materials contem-
plated for these units are the same as currently used on Apollo, PH 14-8 Mo
and PH 17-4,
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Crew Compartment

To incorporate MISDAS in the Apollo-type spacecraft involves some
minor changes in the crew compartment, requiring installation of support
brackets, actuators, lateral braces, new attach points for joining to the
aft shield, wiring and attendant systems for firing attach bolts and skid
extender propellant, and other miscellaneous hardware (Figure 38). The
attachment of this hardware is to be accomplished on a completed unit with
very little tooling involved.

Aft Heat Shield

The aft heat shield structure is fabricated as a six-segmented center
heat shield of brazed honeycomb to which are welded 12 skid housings and
12 truncated pie-shaped outer segments of brazed honeycomb. This sub-
assembly is finished to the same diameter as the Apollo heat shield.
Attached to the periphery is a corrugated toroidal structure much the same
as the one currently used. Additionally, an outer support ring is riveted
to the inner surface of the shield to which the actuators are joined. Skids
are inserted within the skid housings and the whole unit has ablation
material added in the usual manner,. except that the ablation material added
to the skid will be separated with a ''no-bond'' separator, permitting
extension of the skid.

The center portion of the heat shield consists of six segments, Each
segment is a honeycomb sandwich with stretch-formed face sheets,
chem-mill sculptured to provide welding lands and then braze-heat-treated
with the core, The inner support ring segment is machined as a ring
in the heat-treated condition and then segmented. The brazed segment sub-
assembly will be trimmed to fit, decored, and excess braze alloy removed
prior to butt-welding to the inner support ring segment. Three of the seg-
ments will be handled in a similar manner. These two half circles will then
be joined to complete this subassembly. In general, butt-fusion welding of
both surfaces of sandwich panels will be done concurrently.

This particular manufacturing approach was used for the center heat
shield as it was believed to be more predictable based on past experiences,
particularly with reference to the B-70. The possibility of butt-welding the
edge member, as a full ring, to a one-piece center portion was considered,
but it was believed a full ring weld, even though done in a staggered fashion,
would introduce excessive stresses and distortion. Another method that
should be studied further involves a completely brazed one-piece assembly
rather than a segmented assembly. The edge member would be machined as
a full ring, the skins stretch-formed, and the whole unit braze-heat-treated
as a complete assembly. Experience on the B-70 has indicated that brazed
faying surfaces were troublesome, lacking consistency and reliability.
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Therefore, development effort would be necessary to verify a consistent
process. This latter method would reduce weight as well as cost, when a
technique is developed.

The 12 outer segments of honeycomb will be made in a manner similar
to the previously described center heat shield. The face sheets will be
stretch-formed and chem-mill sculptured and then brazed to the core in the
usual manner. No edge members are necessary; however, excess trim will
be allowed for fitup at the next assembly.

The skid housing assembly is a machined and welded assembly
consisting of two machined skid rails, an aft-housing cover and a series
of skid guides which are riveted to the inside of the rails to steady the skid
as it extends. The skid rails will be machined completely out of heat-treated
contoured bars. The connecting sheet is rolled, chem-mill sculptured to
provide welding lands, and then notched to permit insertion and welding of
the thruster receiver at a later operation. The two side rails (right and
left) will be butt-welded to the connecting sheet, except in the area of the
thruster receiver attachment. The skid guides (of either Teflon or aluminum)
will be installed on the inside surface of the sides and flush riveted. Material
is left on the skid bearing surfaces so that a light finishing cut can be taken
after all welding has been completed, and will be done on the next assembly,

Aft Heat Shield Subassembly

During the aft heat shield subassembly operations, the 12 skid housings
and outer segments are butt-weld joined to the center heat shield as well as
to each other. Additionally, the 12 thruster receivers and 24 skid housing
blocks are welded in place. The sequence of operations is important and will
probably be as outlined here. The skid housings will be installed first and
butt-welded to the inner support ring at the surfaces provided. The outer
end of the housing will be jig-located. After fitting and trimming, the outer
segments will be welded to the center heat shield and then to the skid housing.
A welding sequence for the radial welds will be developed on the first few
units,

The 24 skid housing blocks will be welded to the upper rail surfaces.
A light finishing cut will then be taken on the skid bearing surfaces of the
skid housing. The thruster receiver will be installed next, its location deter -
mined by apply-type tooling, indexing from the skid bearing surfaces. This
will be a manual-type weld operation.

Machining of the skid housing blocks to mate with the crew compart-
ment is one of the last operations performed. The hole pattern will be
match-drilled, requiring a comparatively simple master. The last operation
in this fixture is to machine and decore the outer pe-.phery of the honeycomb
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outer segments and skid housing for installation of the corrugated structure.
The unit is now ready for final assembly operations which include installation
of the skids, outer support ring, as well as the corrugated structure.

Skids

Manufacturing of the skids involves forming the channels wrap-stretch
formed and chem-mill tapered on the inside surface in the required area.
The longitudinal joint, including the recessed area for acceptance of the
thrust fitting, will be machined for welding. The two full baffles are located
and welded, one in each section. Four half baffles are located in the lower
section and welded.. The longitudinal weld is made, after which the two full
baffles are riveted together. The outboard end will be cut to contour and the
nose skin welded into place. A vertical slot is cut in the inboard end and
the thrust fitting is mated and welded to the skid. The completed weld
assembly will then be heat-treated, after which the thrust fitting is reamed
and holes will be drilled and tapped for the skid stop. Those areas that ride
in the skid housing rails will be machined to final dimensions and curvature
to ensure a sliding fit.

Outer Support Ring

The load-carrying outer support ring will be machined in one piece
(except for the covers) out of heat-treated material. This method was ‘
selected over fabricating the unit of formed sheet material wrap-stretch/
wipe~formed on a Cyril Bath stretch former. Tooling and fabrication costs
will be high for the stretching operation, trimming after stretching, weld-
joining the segments together, and flush-riveting the lower cover plates. In
addition, the fit of the formed sheet metal part on the heat shield may require
additional hand work before riveting to the structure. The machined part
should not present these problems. After machining, the actuator attach
brackets will be located and riveted within the ring. The covers will be
made, holes drilled for their attachment, and the parts identified for reloca-
tion at final assembly. Since the holes in the flange for attaching the ring to
the structure are not easily accessible, they will be drilled at the time the
cover holes are drilled by drilling straight through from the upper flange.

Final Structural Assembly

The first operation in the final structural assembly is to blind-rivet
the outer support ring to the aft heat shield subassembly. Rivet holes will
be drilled from holes previously drilled in the ring flanges, The lateral
brace bracket locates from the actuator attach bracket and rivets in conjunc-
tion with the attachment procedure previously mentioned. The riveted ring
covers will then be installed, leaving the bolted covers for later installation,
At this point, the skids will be inserted to verify the.r fit, and rework where
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necessary. The skids will be removed and the skid housing covers riveted
(inboard covers bolt on) in place. Next, the skids will be reinstalled, the
skid stop bolted in place, and the correct stop position established.
Temporarily, the skids will be attached in their closed position for shipment
to the contractor for installation of the ablative material. The toroidal
corrugated structure will be installed as the last operation in the same
fixture and in the manner currently used. The unit will then be ready for
shipment to the ablative installation contractor.

Ablative Installation

It is anticipated that the ablator installation will follow the procedures
used for Apollo. The contractor will install ablative material in the usual
manner except for the end of the skids. To ensure positive movement at
extension, the ablative material will be added to the skid as a plug with a
Teflon or other '"no-bond'' separator between it and the balance of the heat
shield ablator. The total heat shield will then be ground to the correct
contour and returned to S&ID.

Final Buildup

In going through the final buildup, only those items peculiar to the
MISDAS installation will be considered. The order in which they are
mentioned is not necessarily critical, unless they are sequencing operations.
The installations and operations required will be interspersed with those
normally associated with a conventional Apollo buildup. For instance,
installation of those items containing explosives will be installed as late in
the process as possible and by personnel experienced and trained in their
handling.

Before installation of the crew compartment, the temporary skid
attachment will be removed and the skid partially extended to permit instal-
lation of the propellant barrel in the thruster receiver, which has already
been welded to the skid housing. The skid will be retracted, verifying
clearances, etc., and its position will be fixed.

The bolt-on skid housing covers will then be installed. During instal-
lation of the crew compartment; the lateral arrestor brace and the actuator
will be joined to the outer support ring, after which bolt-on covers will be
installed, closing out the support ring box section. Explosive-type attach-
ments will be installed, joining the crew compartment and aft heat shield.
Electrical circuitry for firing these breakaway units will be checked out
prior to final hookup. The balance of operations and checkout will proceed
as normal Apollo manufacturing operations. '
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CONCLUSIONS AND RECOMMENDATIONS

MISDAS CONCEPT SELECTION

Two mechanical landing system concepts were selected from a total
of ten studied during Phase I of this contract: the six-segment heat shield
and the radial skid - deployable heat shield, A more detailed analysis of
these two concepts was conducted during Phase II to evaluate their charac-
teristics and select one for further design, development, and qualification
for manned service.

Evaluation of the two systems studied under the requirements set up
in the Guidelines, Constraints, and Design Criteria section leads to the
following conclusions

1. Both systems absorb energy on contact with the landing surface

2. Both systems are stowed in the aft bay compartment during flight
and are deployed prior to landing,

3. The required deployment time of 30 seconds is ample for operation
of either system

4. Both systems are designed for maximum reliability, simplicity,
and efficiency. A quantitative evaluation of these factors was
considered to be beyond the scope of this program,

5. Both systems will prevent overturning of the landing vehicle and
damage to the inner structure under specified landing conditions.

6. Crew tolerances for impact accelerations and onset rates will not
be exceeded by the spacecraft landing with vertical velocities of
up to 15 fps. Higher vertical velocities will require additional
energy dissipation, (i.e., on the crew couches).

7. MISDAS design involved minimum inner structure modification,
Significant changes affect only the heat shield and heat shield
support design and manufacturing
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8. MISDAS weight addition could not be restricted to 3.5 percent
of the 14000-pound landing weight during this preliminary study.
Weight fraction of the legged system is 673 pounds or 4. 81 percent.
Weight fraction of the radial skid system is 955 pounds or 6. 82
percent. Figure 37 illustrates the weight required by both the
radial skid system and the six-legged heat shield system for
Vy = 15, 20, and 30 fps and include weight of the system for the
AES application (10, 600-pound spacecraft). It is to be noted that
weight of the six-legged heat shield system grows more rapidly
than the weight of the radial skid system because the radial skids
are not assumed to absorb landing energy but to prevent tumbling,
and are always designed for the same load conditions.

9. No part of either system is located inside the crew compartment

10. Both systems are reusable after normal landings. They require
replacement of the spent heat shield and minor refurbishment of the
energy absorption mechanism.

11. Ultimate load factors used during MISDAS design and analysis are
consistent with requirements of Paragraph IV-A-11 of Exhibit A of
Contract NAS9-4915.

The two systems studied during Phase II have been compared to select
and recommend the system that best answers the selection criteria require-
ments, The requirements for selection were as follows:

Landing stability characteristics for

(1) V=0 to 15 fps
V= 0to 80 fps (Basic requirement)
= 0 to 0. 35

(2) Vy=0to 30 fps
V= 0 to 80 fps (Growth potential)
=0 to 1,00

Weight ,

Simplicity of design, manufacture, and operation
Development problems

Retromotor installation

Spacecraft compatibility
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A comparison of the two systems based on these characteristics is
presented in Table 13. It shows that, although both systems are stable for
land landing conditions defined in the Design Criteria, instability character-
istics for higher coefficients of friction and sinking velocities, landing
characteristics, apparent reliability, mechanical design simplicity, and
retromotor installation favor selection of the six-legged concept. Manu-
facturing and development problems have been identified in both systems
and are not considered to be beyond the scope of normal engineering
development.

Weight penalties imposed by the landing system favor selection of the
six-legged concept for conditions encompassed by the design criteria landings
with veritical velocities above 15 fps. Ground coefficients of friction higher
than 0. 35 show weight advantage for the radial skid concept. However, these
are considered abnormal conditions and, except for their structural effects,
they have been out of the scope of the program,

The six-legged concept is recommended for further design and analysis
because of its lighter weight for specific landing conditions, good landing
stability characteristics, potential reliability, mechanical design simplicity,
and retromotor installation characteristics.

SUGGESTED FOLLOW-ON PROGRAMS

A final definition of the MISDAS installation in AES will require a
detail design, development, fabrication, and test program. The major steps
and preliminary schedule in such a program are outlined in the following
section and in Figure 39. It is recommended that a follow-on effort be
initiated, especially in the following areas.

Development of Segmented Heat Shields

This effort should involve (1) investigation of problems related to space
exposure, entry, deployment, and landing of a craft with a heat shield seg-
mented to permit deployment and use of portions of it as landing and impact
absorption element, (2) study of heat shield splices, ablative non-adhesive
edge members, hinge and separation lines, and deployment devices, and
(3) fabrication and testing of segmented ablative heat shield specimen under
representative entry conditions to evaluate edge erosion, ablation, and
sealing.

Stability of Legged Vehicles

This effort should involve the expansion of computer programs devel-
oped under Contract NAS9-4915 to cover more realistic situations, ground
conditions, and vehicle attitude than those assumed during the contract.
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Table 13. System Comparison

Criteria

Six-Legged Heat Shield

Radial Skid

Landing Stability
Vy = 0-15 fps
Vy = 0-80 fps

p = 0-0.35
(Land landing)

1

Landing Stability
Vy = 0-30 fps
Vi = 0-80 fps

p=0-1.0

"

Landing Stability
AES application
Vy = 0-15 fps
Vy = 0-80 fps
(Water landing)

Weight Penalty
Vy = 0-15 fps
Vi = 0-80 fps

p=0-0.35
W = 14000 lb
W = 10600 1b

(AES application)

Vy = 0-20 fps
Vy = 0-80 fps
B =0-0.35
W = 14000 1b

Vy = 0-30 fps
Vy = 0-80 fps
p = 0-0.35
W = 14000 fps

Manufacturing

Reliability
Considerations

Mechanical Design
Problems

Development Problems

Retromotor Installation
(AES application)

Spacecraft Compatibility
(AES application)

Stable, with maximum tipping angle
of 20 degrees.

Becomes unstable for B =0.4,

roll = 0, and positive pitch relative
to earth - requires less roll
control (Figure 27).

Legs need not be extended to expose
retrorockets; good floating stability
expected.

673 1b

556 1b

1244 1b

2406 1b

Mostly within state of the art.
Few development problems.

No need to deploy landing mech-
anism to deploy retrorockets and
attain Vy = 15 fps, no problem on
water landing.

Deployment of heat shield
segments.

Heat shield - ablator seals around
segments. Shock absorbers - need
development to meet requirements.

Good - reaction forces are applied
directly to inner structure.

Good - equipment must be relocated
in and out of aft bay compartment.

Stable, with maximum tipping angle
of 40 degrees.

Becomes unstable for K = 0.4,

roll = 0, and positive pitch relative
to earth - requires more roil
control (Figure 36).

Shield must be deployed to expose
retros, with impact stability
problems.

955 1b

737 1b

1166 1b

2226 1b

Mostly within state of the art.
Few development problems.

Heat shield must be deployed to
expose retrorockets and attain
Vy = 15 fps, complicated water
landing.

Deployment of radial skids.
Deployment of retrorockets.

Shock absorbers must be developed
to meet requirements; skid housing
manufacturing; skid deployment
after exposure to environment,

Poor - heat shield must be deployed
to expose and deploy retros; forces
applied to inner structure through
extension mechanism.

Good - equipment must be relocated
in and out of bay compartment,
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Scale Model Tests of Stability and Impact Attenuation

Verification should be made of stability and attenuation values obtained
theoretically through model testing, to raise confidence level and to deter-
mine the influence ground slope, terrain discontinuities, ground coefficient
of friction, etc. The 1/4.5-scale Apollo command module models and test
facility used by Southwest Research Institute for their investigation of
dynamic landing effects could be modified to incorporate the deployable legs
on the models and implement a land landing MISDAS test system
(Reference 9).

Installation of MISDAS on Apollo Boiler Plate

Verification should be made of volume and weight requirements of
actual hardware; structural effects of landing loads on inner structure and
support bracketry; overall acceleration levels in the vehicle, specially life
support systems; verification by testing of water landing capability of a
vehicle equipped with ground landing attenuation systems.

Shell Dynamics of Land Impact

Analytical and test verification should be made of the interaction of a
spherical shell structure (simulating the Apollo heat shield) impacting land.
Analytical programs should be developed to account for soil elasticity and
deformation of shell structure.

SUGGESTED DESIGN, DEVELOPMENT, AND QUALIFICATION
PROGRAM

1. Detail Design and Analysis
a. Prepare design specifications
b. Prepare drawings
(1) Impact attenuation mechanisms
(2) Structural modifications
(3) Systems relocation
c. Build a MISDAS/Vehicle integration mockup
d. Modify dynamic landing stability program to include:

(1) Realistic soil characteristics
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(2) Dig~in conditions

(3) Real strut characteristics -~ strut optimization
Perform dynamic analysis

Perform structural analysis

Perform detailed test programs

(1)  Development

(2) Qualification

(3) Acceptance

Prepare manufacturing plan

(1) Tooling

(2) Facilities

Areas where detail design and analysis are
necessary include:

(a) Ablative and steel heat shield redesign

(b) Impact attenuation members installation,
deployment, and operation

(c) Shock struts
(d) Heat shield support members

(e) Command module modified structure

2. System Development '

a.

Segmented ablative heat shield tests (see sketch)

(1) Exposure of joined ablative samples to space
environment

(2) Exposure to entry conditions, including thermal-
structural tests of joined samplcs to determine
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effects of strain, erosion, material degradation,
bonding material expansion, hardening and soft-
ening of thermal protection materials, heat shield,
landing shoes, and land and water impact

NONBINDING
SCALING

COMPOUND ABLATIVE

b. Thermal-structural tests of segmented steel heat shield
(reduced scale model). See sketch below.

(1) Thermal effects of space and entry conditions: strain,
distortion

(2) Structural effects of entry, deployment, and landing
forces
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c. Shock absorber system, Sée sketch below,

(1) Space environment effects (temperature, vacuum) on
seals, structural materials, and fluids

COLD STORAGE

(2) Load - stroke chéracteristics required by dynamic
landing

(3) Reusability requirements

d. Landing energy absorption unit tests (assembly of heat
shield and deployed or undeployed struts). See sketch below.

(1) Space environment effects on joints, bearings, seals,
etc.

(2) Entry conditions effects on unit
(a) Thermal and load induced deflections and stresses

(b) Thermal effects on structural and sealing compound
materials \
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(3) Land and water landing. See sketch .
(a) Total unit energy absorption characteristics

(b) Deformations caused by landing on different
" soils

(c) Energy absorption characteristics on water
landings (deployed and undeployed units)

e. Segmented heat shield tests (reduced scale)

(1) Mechanical and thermal stresses and deflections

(2) Entry loads
(3) Land landing impact (deployed system)

(4) Water landing impact (deployed and undeployed
system)

f. Scaled spacecraft model with MISDAS installed tests
(1) Land landing stability
(2) Water landing stability
(a) Deployed system
(b) Undeployed system

(c) Flotation stability

- 118 -
SID 66-409




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

3. Qualification Test Plan

a,

b.

Install MISDAS on Apollo boilerplate or used spacecraft
Land drop tests (MISDAS deployed)

(1) Mechanical integrity of support structures, energy
absorption system, heat shield (deflections)

(2) Stability verification

(3) Crew g limits verification

Water impact drop tests

(1) Crew g limits verification

(2) Floating stability

(3) Command modulelwater tightness verification

Water impact drop tests (MISDAS not deployed)

(1) Crew g limits verification

(2) Structural integrity

(3) Floating stability

(4) Command module water tightness verification

Refurbishment and reusability

(1) Land and water impact effects on permanent structure,
MISDAS attach structure, energy absorption compo-

nents, steel heat shield fixed portions, steel heat
shield rings, hinges, and moving portions
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10.

11,

12,
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APPENDIX A

STRUCTURAL ANALYSIS CALCULATIONS

This appendix presents the structural analysis cal-
culations performed in support of Contract NAS9-4915,
Phase II, completed 13 May 1966,

This analysis is based on Figures 18, 19, 29, and
30, and the Guidelines, Constraints, and Design
Criteria section of this report. Summaries of loads
and margins of safety are included in this report.
Allowable stresses are given in Appendix B.
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prepareo 8y: A BDATENAN NORTH AMERICAN AVIATION, INC. PAGENO. 3-C oF
- SPACE and INFORMATION SYSTEMS DIVISION

CHECKED BY: REPORT NO.

MiSDAS STUDY - SEGMENTED HS | vore v,

DATE:

Art HenT Swiew STRUCTURSE
Bending OF StgrenTed SeeTio

tA Ax ¢ = 0
=194 (13.7) +517(89%) + 3¢.2(2.37)
= -3¢ "+ 4380+ 8¢ = 736G LR lny
MAT o« 3
= 194(18.7) + 4271 (¢.67) + 26
= -340 + 2150 + 86 = =—io4 la Juy
M Ar o = G
~ 194012.7) + 333.3(5.14) + 26
= =246¢S + |¢q0 + 36 - =629 L2 e

M Asx e =9.0

—194(a7) + 23176 (3.7) 436

-13%0 + ®5§5 +26 = -939 (8 Jus
M At ¢ = 100

=194 (87) +1329¢(3.2)+%6

T - 1635 + 636+ %6 = =9¢3 e e
M Ay 9€ = 12.99 ‘

-194(57)+ 29 (1.935) + 36

- hogs  + \ql.s T+ BG = - %27.5 L% Ins
M AT o = 13-01 }

=194 (5.7) + 9901135 ) + 3¢ (227)

< —lleS  * 1q1LS  « (o4 « —Be9qS (s
.4__~_x._______
R r
Tgoo;
2 =
N |
4 Soe
4=
B M Dingram . o0
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pREPARED BY: Bateral

CHECKED BY:

NORTH AMERICAN AVIATION, INC.
SPACE and INFORMATION SYSTEMS DIVISION

PAGENO. 3.3 oF

REPORT NO.

DATE:

Mispas STodw - SegMENTED H/S

MODEL NO.

Ars Hent SHicn (To\:zomm_ SECTwu)

|.20

= S

Fon_.0l§

0 e
@;:L i.00
X ) Ly

X

~— Swin .020

Tvem | Aren | Yve | A9vx | Quon | Adun 1o
©) .009 993 {.00395 1.654 | .0032%
® | .022s5 | .5'0].0145 | .17l |.000%3
.009 027 | 00024 ] 312 | . c00x7 | C°H'?
4 .0%4 010 [:006024 ] .329 | .00260
.07 0% .02393 00918 | .o0212
Yun - 82393 | .339 00815
.070S% .01 0373
At ¢ = 13.01
f‘ . 209.5 (L) (66i) | CR000 Py
! . 0lo3
- €09.5(12)(:33%) | 3 goe PS{
¢ 01033
BOCKHN‘C\ -Au_cwt\(-)u‘.- 1'\@1@
Qeq = K ET® [f« ? L ca%@s)e) T (&Y
FIEBT ANy 12C1-.33%] 1.20
= 44 100 PS.1

Buekting Avowanie Iten(2)
- 1o (28)(1e) T2 ( o1

120\ —.33%)

= 5¢,200 pPsl.

\e0 O

MG, 4d4,lc0  _\
3)1\%80

0.39.

A\l
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SPACE and INFORMATION SYSTEMS DIVISION

mose o ABNTENMA| - NORTH AMERICAN, AVATON NS, e 4| o
CHECKED BY: REPORT NO.
ar MisDAS STUDR = SEGMENTED B3 | soom wo.
At Hent Swiewn DerieeTions
WaTeR ThpaeT
From R=44 T K-57 R
% s [ Maxaxe = M
i 'x = ——————— —
£l ¢ £l 3

Wx = 15,900 (g Thg .
EI = 25(w)¢(.os8)(r) = 2175 (1o

. 15,900 (12.85)% . . 312 Twneues
3 (275) (10)°

DerLieTion O Cenwter Pancl

D . A¢ W R
|44 W G 3
Suin Taekness = 030
Tor Panee = .03e(N?(2) = .0co
7 oF Seud Viate o bd? A3 . 12(1)

Iz . B .
Eqo waLanT £ - 12 (1) \2@065} = 120
B I

$. 9c(a,000)(9) (44)% | 2. 5¢0 Tus
laq TU (25) (16)¢ (L72)

TotaL DEFLCETION = .56 + .71
= 2.873 ITuewck.

The AF'\ Hfm %mﬂb \Jm. CowtneT Tue I\NER %TRUCTURC’.
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A Bate NORTH AMERICAN AVIATION, INC. paceno. Do\ oF
__P_II‘PAIED BY: BA mA’J BPACE and INFORMATION SYSTEMS DIVISION

CHECKED BY: | REPORT NO.

are_ MisDAS STuny - SeamenTen H[S.

MODEL NO.

Ring At 44" Rap In Art Hent Smad Suw StrocTure

W ldpe0e Ly V= Refi/S  w = .38
Loao Theren3 € FnetoR ”
QoR | 4ce | 1.7
(1:)> A<
Rer Pace L4
My = 17,150 (1.7%) = 30,500 L§ Ins
My = 3\, Geo L) - 56,260 LR IS
Rewsen Ring Seemion ( Rer Page \.s)

[ %m,.. .
] " i "1 /‘f'\Q‘FcF(\AL . 390 Thiek
- 7 T
Weao- T K T
; i ]
X ? ‘ l —X l 2.00
| | |
J__../ b —_ o \_{ ")
AN
P ,?fS_'E{___,_, ,.l

Ly = 3eea2)(829)%(2) + (.70“)(‘.333/{2 .55 Ine”
Loy = 130 (38) (Lo7)3(2) + (29)(309 iz = 2.626 Ins.

by ,
/( My (ee) L M (1379 ' 130
% [ I~y Lav

. [ 30,800 (t00) 56,200 (1.500) | 123
1.959 2.6

= (19600 + 3 Goo) .33 = GR,loo

MS . 77,000 _I - 0.13.
6,100
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SPACE and INFORMATION SYSTEMS DIVISION

mow e MBironen | NQRTH AMERICAN AviATION. NG |0 §:2 or
CHECKED BY: T NO.
ATE: MispAs OTowe? - SegmenTed HIS MOOEL NO.
Deprovasie Leg 0Fr[8ec L= 3T

Rer Pace 1.7

A+ Seerion AA

Bewnin g Moraemt = ilo,eoo.((.‘i%) = 374,000 L8 Inc
Ewd Lead = 43 750 (17R)
SHenr, =

= 2,050 (L)

=

Scevion AA

78,000 L3,

37,400 LB
Compressive Alowasie OF. 1975 Steew Piate At Goo°F
Ruer Conters 275 Duenes

— 2.7S N
) \
L . )
S L =
Ceq KTl
N

(£)
12 (- u?) b
6.3 (1) (25)

lo)c’ s\
12 (t=.33")

PP Y
A82,0600PS[

Use Fuie Compresswie Alowanie OF 15¢ 600 PRI,

i}
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. - NORTH AMERICAN AVIATION, INC. . 6.2 oF
PREPARED 'Y'A Baverad SBPACE and INFORMATION SYSTEMS DIVISION PAGE No. 3

CHECKED BY: _REPORT NO.
DATE: v Migpas STop? - SEGMENTED H[S MODEL NO.
DepPLovasie Leg \ = V4000l \s20F[Qec o :.3€
QeeTion AA (RC" Paec l.%) g
P 10.5 . o
.S ,_"7_5_ T ’ }“i)ﬁa
| p | I |
i._.. T — 1 1 1 l/\ 1
'_J r ~— )% | La3c
S1E bq?ﬂc &5'4\'5-
Tvev | ARem Sun Alun™ To |
© (470 | .40 | .20% L0053
@ .Too | 484 | .1c4 NY I
@ 462 o) o 0722
@ oo | .4%4 rx-: .09 |
(& 1197 640 | 805 .0a5%
5.%08 1.938 03%¢
193
V9736
J . 374,000 (,7(R) + 18000
. 18029
1973 ¢ 5.208 X
~  13¢,000 + 13,400 = |49 4qc0 PR
MQ . 158¢o%ee _ | . o.04.
14, 400

Shenk On ATTacHienT?
9 - 37,406 (1,47) (.64) . 23,900 L[,
1.9473¢
C Rowe 0% Y4 Hocks A1118 Piten
Aucowanie Swenr [Tuew . ¢ (4eS6) . 24,200 L3/Tu

IR
MQ 24360 . 0.0l
23,900
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PREPARED BY: A Batenaw

CHECKED BY:

NORTH AMERICAN AVIATION, INC.

pact NO. 5.4 of
BPACE and INFORMATION SYSTEMS DIVISION

REPORT NO.

DATE

MisDAS DTode? - SEQMENTED H[S.

MODEL NO.

Sivewart FITT\NG‘ -
W = laccoLy
Her Page 1.14 .

Max Benbing Moment - 124,000 (172) = 220,500 Le INS |

« [Ewd Load » 23456 (1.7%) = 41,coe LB,
8E‘CT|0M PROPERT\F‘S Max SeeTion .
o] 3
s 4.60
'3‘°_\erjLJ-Lm
}("I" ! PE AR A ! [

Nowe: Tue Avaac Loap Aepuied To Tue Iwnew Strectome B
e Shocw StRoTs 1s GRenter Tad TwE Mamy Lonacwres

guoa& STQUT o COHHAND Movurt TNNER gTRucT.
V=2eFi/Sec w .38

'

<

I
LA ' 'I ‘ { l'/ .—‘g
./ ///’ 4 )L ) t l- i
; . i

A9
T Louqﬂ?au \J\‘.—Lb\?ﬁ.

Inte Taner Strac,

\.orn‘s.

T7ev1 | ARem Ny ANyy Man Atun® Io
® [3.320 {2908 | 2.@30 [1.uS | 4.130 | 3.3¢o
® ?2.910 330} 1:%40 | 1.260 ] 4.¢20 274

G. 230 11.120 R. 130 3.634

+ MiTo . .790 3. 7%0

0 = —_—
\/N G. A3 12.324

f . 220,500 (Q.‘ic) - 41 Goo

e | 2.3%4 C.230
*  §83,%00 + (7eo = §9, 900 PS.]
Feg Fom 7075-Te Ay Re® = Co,c00 PSI
MS . Zewo.
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PREPARED BY: A Batenau NORTH AMERICAN AVIATION, INC. PAGE NG, -5  oF
SPACE and INFORMATION SYSTEMS DIVISION

CHECKED BY: REPORT NO.
MisDAS Stup? - SegMNTED H[S |, om vo.

DATE:

Corarann Mobure InneR STRucTure GirTi Rivg S7aXe 43.
W = 1a0ee V=20 F—./Qm JRZSEI
Rer PA—QL- (o :
CGND\Ticu@ R, = A2, 160 (\.7%\ = 39,400 3 .

Rivg Bewnvine .

A
e e
A o i

g\?CTlau A A

Nl

/:a\ o Ax
APT—’RD)( EM = KBR\“( — CA%UHNQ qu gc-‘t‘no;\; CON%TQN'\)
= 16 (39,400)Go = 379000 L InS
f . 32J9.cc0 _ loR,0c0 PSI
™ 3.5

Miv Bine Seetio Mo P.g—_quu:as Tncrentm ¢ Lo

loR.c00  _  |.%o Qo Y,
Coooa ’

TECTION INCHIKRSE 1S LLiUmMecb 7o AP =TT
RivGg chpt omnLy , MAOTAIN NG SAAT ehM

WIDTw
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reoranm wv: A BATENAN| ORTH AMERICAN AVALION NS, [metne 6.6 o
CHECKED BY: PORT NO.
ot MiSDAS STun? - SEAMENTED H /S | om ro.

Commant MobuLe I\mﬁ{ SJTRL)CTURG AFT g\DE\AAL\_ Suiw -
\{= 14000 L3 V= 2Fr [Sec A= 3G

Rer Page 112
€2 Bono OveErRLAP .
' . STn43
= 5 ===
{?T T,w ('—..04§/
““““ 3= Z =771 Svag
N

N=54000(172) « 9¢4a00lm.
7/mw = 9¢, 400 (2) - 3320 LB,)IM.

| (2) 29
SKiN Twerness . 048
:(S - 3340 . 3¢,800 PS.I.
(2) .ocas
MS | 38,000 _t _ 0.03 |
}C,%oo
Ring To Swin Bond StRrEss (%TAA.})

( . 3330 = 1330 PRSI
- gBQ\QT:‘ (4) (. CQ‘ )

. - N
MS + Zeweo (NO‘TE ot 00 Existivg Tnes gTRUCTORC‘ R'N"\/
STRES‘J Osd \,\SE‘LD AT STA 14 Ao 43 .
{ = 3390 - 15,8505 P&
AN (2)( o045+ .cec)
Wewy Atovsnzng 15,000 PS1T
New Rmvge Ay Loungeic s RE‘Q:_‘-H«“u, \J(TH (e ER
Mews Lingu s .
581 c07¢ Lo Gnckne<. " [aeN —
L . 3)’3’*‘- O 14, 400 Pu1.
- (e )(.0d™+ o070
‘ ) MY . 1s2a 0 = 004

\4 ase
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nevme: ABaonall  HORTH AMERICAN AATION G, |mew 5700
CHECKED BY: REPORT NO.

e Migpas STuDw - SeaMentED RIS | mooa ro.
Sroek STRoT W =14,600 L3 \/“-')\oFTIS’GQ M= 3%
Load = 85 cc¢c (LaR) = 98,008 L3 (ULT) ,

Rew Praz 118
—— ~ J S— —_—— . ﬁdw
..... 3 7.'. 7,7 % S -,_"__..__._J
Ivera | Tuewness | Diam | Area Y 1 e /Q;]
® 1 olee | 2.75 | .my | 736 | 942 | 12§ |
© oo 3.2 | 990 | 1.230 | 1. 01S .o |
¢S ‘120 338 [ 13¢8 [2.276 | 1,289 | 14.2 |
BY
= - 125 4 1o 4 4.2
& .4z bells 1299
T 3.3+ 985 + [L.o = 3419
Corumm Allownrmit = 120,c00 PSI
r . 98,0020 = 119,500 PSI
-1 C
TR
MS . 120,000 | ZeRO
v q, s~
Iuveruac PrRe<wuRE . A3 600 . lo,e0a PSE
TThaan)?
\J(\LL g'kﬁc‘,'z (ITC’M’:.},) - 1o, (l‘c liy_:} - ISl.f.b(\m P(Ji
O.l2a
[\42 s I_gixi,:“?_.p - - O 573
ISt o
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eraneo ov: P BATEmaN BPAGH ad T POt ON Sam S NG, | Paceno. 5.9 o
CHECKED BY: REPORT NO.
. MiSDAS STudw - Segmentid HIS | e ro.
\JATGR THP%T Coum‘nou
M= l4p00ly V= 20Fi[See _w = .35
FRor Cryreria ITmpaer Fore » \‘R.Cg Fo’k <o FT/?EC.
Lono On Art H[S = 14000 (12:5) ©= 175,000 LR |
Lond Therenge Fnewo R - 12.S/2 = 1.5,
Rew Paez 2.1 Aun 0. 3.
Ast Hent Sticwd Swin TRiek NES? |
S .0%S . | \ -030
/ ! \ ‘
.045 041 | .01
t
4
; .
0B
Impact PownT 056 \
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T NORTH AMERICA VIATION, INC. .
PREPARED BY: A BA ! Q‘AN 8PACE and lNF’ORMA’!'lONN QYSTEMS DIVISIOCPI PAGE NO. 5 % o
CHECKED BY: REPORT NO.
oare MiSDAS STUDY = SEGMENTER H/[S | oom wo.

Ring AT 44"Rad In Af7 Hent Shiew Sus StRueTuRre

\IJ‘M-)OOOLB \ = 30 FT/SEL /u=.’35
Loav Tueremse FacToRr

=@: . dco , 4.00
as)

2%
Rer Page 1.4 _
My = \7,\%0(4.“) = ¢%,c00\R Ins.
Mu =31,Co0 (4.00) = |%¢,4001L8 Ing

stgeb Ring Sketion (T{a— Page \.S>

To AccomMoDhTETwc- Miguer Loans A%ocn:\‘r»:\) \/x(\'m A
\JE\.GC\*'-) Or 3o F1. QEC)A Cunvge TN we Design Coneeds
Is Regumed - A 'Bowt Up Bortey Stetion T1s Benes
Conaioered Whien ELmmwates Tee Weaws At Tee Pomts
Oc Mayimorn STRecs Adg Permiss Tme Use OF (5¢000 PSI
Avowngre (130,00n PST Hert TRenT Stitl AT oo T)

3-9,%?_mo- o 23506 Thick
/%7 s gy TT_‘f I
X L: l’r X |9.00 |A:CO
NIRNE =
== | — —— I B !
Y

Ixx = '%.Oo(.’%'s) <\.\'>~<.)2(’2\) + .50 C(.‘ﬂ3 ./|z = 2.92 6
Iva- \.Qo(.n}(\.'mi)"‘(fz) + -70(30&3/\1 = 2,374
[ . {_M_v_(_hll LM (0s) )
B Twr Tu9 .(

. 6P oo (13) L l12cace (1S)
A-9A4CQ 2.378

= ('50,400 -+’56,4°°) 1.33 = 15,600 PSL

MS. 18¢e00

| . 0.3§

-
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-y n NORTH AMERICAN AVIATION, INC,
PREPARED BY: A BATW AN SPACE and INFORMATION SYSTEMS DIVISION paGE 0. 5410 or

CHECKED BY: _REPORT NO.

MisbAS STub? = SEGMENTED H[S

DATE: MODEL NO.

DEePLovABLE L[—Z\ M= l4000ls V=30 FT/QFC M =.3%

Rer Page .7

Ar Section AA
Benoing Momawt = Qo ,ce0 (4) ~ 242,400 La Tus .
Enp LoAd = 43 750 (4.00) = 155,000 L7,
SHeaR = 21,000 (4.00) = R4 o000 B

To AecommonaTETis Load Ieremee , Twe LEg Section MasT
Be Iveremren In DeEPTH. To OBTAN THe Required Seacs
For Trug CHawnet , Tue Hak Twey Howewcoma Paney Haa |
Beew. LoenTed FoRwWARD OF Twe AFT Hent Swawn Iunewr
Motd LiNE As Swoww Ik Tue Sueted Bawow.

~

2
=
O

/Inum Srrectume

44 Ran Rng .

H{g TaneRR
MeLD Lint

DepLovARLE LET,
(Max" Sfmow'Aﬂ'> Hinae C},y
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messe vy | BATOAN | BOBTIL AMERIGAN, SNATION N, (rese S el o
| crecxeo BY: REPORT NO.
ot MisbAs STon? - SE&MENTED H/S. | wom o
Depiovasie beg M-14000l2 V=30F S w=.35
Rer Page 1.2 Section AA -

MatTeRiaL 178 Taiek

N B h
@C?: ] JTIL I L i
M

.00

Item Areya | Vwn A “un? Je

©) 3.000 | .22 | 2.330 00’3
@ |V1.125].¢94 | .s541 | .0033

@ |1.350] O 0 G20
@ {1125 | .94 | .54l 0033
(3 [3.000] .39 [2.330 0083
9.co00 3.74¢2 18C2
9.742
5.9282
‘( . 243,000 (.975) _ 1§5,000
c 5.92% 9.6
= 138,500 + le,asee = 154,700 PSI
MQ . IScooo | . 0.0

|S4 o0
Suenr On AttacHmentS
9 - N& | 24,000(309)(R8) , 3I7,5¢0 La_fl\\.
1 5.9 248N
2 Rows 0f Y4 Hucug Ax 0.95 Pirew
Aownmiz SuEpR/ Tuen . 2 (4cko) | 39,200 LB/"L\)
0-95

MS . 31,200 | . 0.04.
37 S0 0
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NORTH AMERICAN AVIATION, INC.

prepAReD BY: B BATEMAN NORTH AMERICAN AVIATION, INC.

pace N0, R-12 of
B8PACH and INFORMATION SYSTEMS DIVISION

SPACE and INFORMATION SYSTEMS DIVISION

CHECKED BY: REPORT NO.

MispDAS STun<? - SEGMEWTED H [S

DATE: MODEL NO.

Sipewatt Fitting - Swock SRuT To Gommand Moot Inner Frracr,

W= 14000lr V- 30F S
Rer Pace 114
Mayx Bewbing MomenT

124,00
Max Ewd Load

-
=

w = 3%

7

o (4) - 43G 000 |3 IS |

13,450 (4) = 93,800 LB.
SEeTion PROPERTIES — May SETio .

i

4378

\3Aas

il

l _ zmﬂ— rﬂj
T

e,

R

i [

o

:78

]
91
=7

3| @ 458 Lonaéron WELDED
431 Jute Juner JrreeT,
Iiem | ARen xx ANvy ! Mua | ARua? To
© | 7.20 [3212% | 22.45 [)1.eco | Q.09 3.¢c0
© }5.02  0sez| 284 [1.503]11.47 53
V2.7 25.29 19.%56 [lo.1 3
YNA z 25‘7») -~ 20669 113.‘5(,
12- 2 29.¢9
( 496,0c0 ('5.0&07 93, [Roo
1€ 29. 69 1.7
= S lee + 7¢S 0 = 5%,760P%;
M%: (o000 ! - .02
LIS
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.t -

pREPARED By: | BATEMAN NORTH AMERICAN AVIATION, INC, paGE No, D .13 oF
BPACE and INFORMATION SYSTEMS DIVISION

CHECKED BY: REPORT NO.

MiSDAS STuDY - SEGMENTER WIS .| 0 no.

DATE:

Commanp Movuie Thner StRucture ARt Sinewnw Swin.
W= 140001z V= 30 Fr/Sec W= 36

Rer Prac I\?.
~N STA43
T == l - ==
}~< GH + t t=.lco
JESNSESS. N
LR L VN
v
\ - 54000 (4.0) = Al¢, 000 LT,
Ve . Agoee(2) . 74¢o LB/I‘u
:lAy (‘1) ‘kﬂ
SKiN e NESS = O.lo o
. 74co . 37 3e0 PS1
N ('7.) .loo
MS. 383,000 & . o0.02.
37,360
Ring To Swin Bond $TREss (S7a 43)
’( _ 7469 . 1310 PSSl
s Bown (&) (1.42)
MS. = pAR =Y

Nowe DepTH Or Riwg At Sta Xe 43 Lucreatiodr 0.0 NS .
Stress On Weawd A Sta 14 Awo 43

( . 74co _ = 14,900 PSI.
al (2)(leo+ 150 )

MS = Zewo

Requiged Mew Laud Tweness = 0.150 Oun RS Awd
Longerons "To Acniewe Zero HMaraiw .
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X X NORTH A T . INC. 5.1
mersne v B Baverian | NORTH AMERICAN AVATIONANG,  [rermo 5:Aor
CHECKED BY: mlr NO.
oaTE: MiSDAS STuo - SEGMENTED H|S. |, 0n e

Command Mobute InneR STRUCTURe GIRTH Ring 37a Ye 43,
W = 14000 Lla V= 30Fr(Sec =36

Rer Page 11|
Conpition @ R\ 22,150 (4.0) = .22 Coo LB,

R C\ .
‘\ . 2

Rl / _,..»~l.01u
N i e
/_ | 3.5
‘ S)&?CTlOMAA.

CPORP& 4"

- —t
AJ

Ri

. J

Arrox BM = KR
= . 1¢(3%,600)Co = 230,000 Ly I’

-[& . 30,020 . 23%,000PS 1
2.9
Min Ring Section Wi Reguire Tnerenzigg B
238,086 . 3.9 - ‘2?%70
Cof:oo

MATER(RC IS ASSUMEN TO e AdLED TO
BPEAN CAPL | WITHOUT CRANGING TrRE RIVUG WIDT+
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION <

prepAreD By: A BATEWAW NORTH AMERICAN AVIATION, INC,

PAGE NO. 515 oF
BPACH and INFORMATION S8YSTEMS DIVISION NO.

CHECKED BY: REPORT NO.

DATE:

MiSDAS STup? - SegmenTed H|Q

MODEL NO.

Swmock STROT W= 14000l% \I=30F1’Sec Ak = 23S
Res Page L1

Load ~ 55,0¢C (4.0) » 220,264 L3 (Uut))

® ©) ®
—c] e
. 37775
116w |Tweuness| Diam | Aren 1 S R
o, 150 4.62 | 2-10 | 5.25 | 1.5% 2.5
® 16O 512 | 24% | .24 | .72 e
® 130 5.62 | 3.07 | 1l.40 .43 4.2
L . 22s o 14.2
e 1.5 1z 1.43
= 7.495 t C.40 + 7.3% = A, 70

CoLumN ALowarit = 15¢ 000 PSI.

’[Q: 220,2¢C4 103 000 PST
Ao —
MS . AS¢ee t 0,49
\ocj,ooo
InTerual PRESSURE . 230,264 . lo,leo PR,

T T (ae3)?

WaiL STRE{"’S

TTer © = lo,(Qon’l\';Q) . 181,000 PS]
150 |

ITE}'\ @ 'lo}\oo(“l.A%\} IQQ)OOO P.S 1
sl

I‘TL’H @ . do6,'e0o ('l~'l?> = 83,000 P_%.i
\Bo

MS s 2&-‘\20.
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NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

C NORTH A ' . .
merssep vy, A Batenmd - BORTH AMERICAN AVATIONNS [ memne. S 1Cor
CHECKED BY: REPORT NO.
oare MISDAS JTupy - SEGMERTED H/S | oom wo.

Water Ireact Conmition.
W= t4000la V= 36F [Sec L= .38
FRom Critemia Trppetr Foree ="21.54 | Fom ZOFT/%—C.
Loan IncRenst FeetoR = 21§ ‘2.(.3?
2.0

Ree Page 2.1 Awd 2.3
Art Hemt SHield SWiv THIeKNESS .
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NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

- .
A Rate NORTH AMERICAN AVIATION, INC. . L o
PREPARED BY: A DATEM AN SPACE and INFORMATION SYSTEMS DIVISION PAGE NO

CHECKED BY: REPORT NO.

e 23 Mar. GG | Mispas . STupw~RabiaL Suin. oDEL No.

Tazgwe Or Cowtewts

Skin Convact CoNdiTiON l
Loans On Suins l
SKid SecTioN .
Skid Housing \
Loabs On Art Hent Shietd Ring (T1Ras) |
Ring Stetion (711 Rad) !
Aet HenT Shicwd Ring (34 Ran) \

GRrRouND ImpacT CondiTioN 2
VeErTicaL IMeacT LoAns 2
Benning On Ring (71 Rad) 2
| 7° TMPACT LoAdS 2
Loans ON Ring (M RAD) for 17° IMPACT 2
Sioe Loan Links 2.
Swock STRUT (4
Siotwnte FTTing (Snoek Strut o €/M) 2
Sioewaw Swin (€1 Tuner STRucTOR: ) 2

WaTer IMpact Conbrrion 3
Loads On ArT HenT Shicwd 2
AFT Hent SwWitw Swing 3

DeviecTiong
A7 Hent Smietd DerLection s 4, |
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NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

mirow ov: . BATENAN | NOATH AMERICAN AvIATION, INC. | paano LU or
CHECKED BY: REPORT NO.
oare 23 MAR GG | MispAs STupy - RabiaL Suin MODEL. NO.

Tage Or ContentS
Lrreet OF Inerensing Desant Vevocits To 20 Fr/Sec.

PAQc—: No

G\ROUND IMPACT COND ITIoN . R TeR.GC

A¥T Hewt Swiews Ouver Ring (11 RAD>
SIDE Loap Linkg

5
S
Juoex §TRUT 5
Sine WacL Fitting (S’Hocw StROT Te C/M) 5
Stoe Wate Suim (€/11 Doner StrocTore ) S

WaTeER 1tpact CoumiTion
ArT HenT Suim S s 5.C

Eereer OF Incrensing Dexent Vevoerty Te 30 T/chc.

Ground IMpacT ConpiTion.

ArT Hent Swieed Ovter Rivg (71 R )
SipeE LoAD Linkg |

9
9
5.
Swoer STRUT 5.9
StEwWALL FirTin (‘EHocK Strat To G/M. 5.10
Sivewatl Skin (€/11 Tuner STRocTuRE S
Ring Sta Ye 43 (eft1 Tnwew STRUCTORE ) 5,12
Water Impaet ConpiTion
Art Hent SHicLd Sking 513
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

- NORTH AME ATION, INC, 1.
PREPARED BY: A BHEHMJ BPACH and INmnuARw'éc?N Asmn:v' M8 DIVISION PAGE NO. l oF
CHECKED BY: REPORT NO.

oare Mispas Stupv - Ramat Sk ODEL No.

Load On Swwg _
Assume Maxinom Tomeung Loan s 1.0 4 A The
Envo OF Twe Suid.

MeighT - 1400012

\-QCA _

fhes
Limir Load = 14,000 L3

UnTimaTe = 14,000 (133) = 13,066 LR
THE ANAL\)%\% Is BA‘S&‘D On e rOL,Low\n\tl
1. e Loan Is ReTnig On Two Suwg
2. Tue Lead Is DigTrizoted Over " OF $kid
3. Tee Skid As A Limit To Owtimate Factor OF 1O
4. Tat Ment Srien Sow- STRectore As A TacToiy Oe 133,

%M:%
-

. -

Mo (on Srrectort ) « 2a(18,66¢) = 186,660 Ly 1nS
ﬁl ’
S - \‘%)c,cé/l - 1,337 Lv.
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

»
A NORTH AMERICAN AVIATION, INC. paceno. 1« 2 oF
PREPARED BY: A BatEnan BPACE and INFORMATION SYSTEMS DIVISION SEHo.

CHECKED BY: PORT NO.

MigDAS STuny - RaviaL Suin MODEL NO.

DATE:

3xip Benbing

49 Q.o
\ ‘L{Mc |
~3 el = 275 La [In
PP SR
\0.0 ;I,. 24.0
” T
S = Teooln

Me = 7ooo (A8) = 175,000 L3 Tus

~R “TY Me 175,000 . 2¢ 300 L.
(th \x‘. S G- CC’

| E‘ - R | Tph”
LG \‘ ‘L

PHM = 26,3606 + Joo o . Il)')\OOLg
(.s) 5.0 1o
Puw = 26,360  _ 7000 . 9QRood
(s s.0 lo
Mas rmewt 5 , .
k=4 Mz e | @15 (4) . Tooo LB InS.
Z , >
x =55 M. 215 (58) | 13,250 Ly Ins
()V
=20 M. eIs () 2%, 000 g Ine..
2 .
Le A4 N, Tsoo (‘.zo) = 140, Oo o R Luc

W= RS Moo Teoo (ARS) =R1455(138) = |30, 700 Lig las

X+ M = Teoo (A8) -115,000 _7000(2F )
27 lo
- nq)ouo-%‘}‘s‘o'o -2180 = 7%,’I§0LRI\JS.

-167-
SID 66-409



NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

| PREPARED BY: A BaTEnaN

CHECKED BY:

NORTH AMERICAN AVIATION, INC,
BPACE and INFORMATION SYSTEMS DIVISION

paceno, 1.4 oF

REPORT NO.

DATE:

MispAR Stupw — Rabiac Swkin

MODEL NO.

Svkin Momewt OF ResisTanet .
FOR t'- .060
MR ¢ 25,%00 (.¢3e)
FoG\ F-.c80
MR - 44co0 (220)
Fer t =.l100
MR = 76,000 (l.o01)
For b= <120
MR lo1,6 60 (l.\?o) >
For b= 130
MR = 113,000 (1.2825) *

RequIRED SKiD “THICWNESS.
‘ 10 ol

-

15,000 |3 Ing.
36,600 g Ins

70,0720 L3 Tus

NY,17%0 La Ins

\aq, 000 L3 DS,

:'-*—-—w—.-'-—-— Ny torng-
| |
hd

- .(%0:

| \

-~ Bewning Momewt

Mi3

-=

¢\°°

F-.0c¢o

MS

- 3¢, 600

“)1@'000

3

—
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

T H T ' . i
rrepareo ov: A BATEMAN | NORTH AMERICAN AVIATION, INC. | eagimo. |3 or
CHECKED BY: REPORT NO.
oATE: MisDAS STuD? —RADIAL SUID . | voom ro

Skid SerTion PROPERTIES.

vt
1

WeL [
X—p—¢ Xl Q.00
— | e e
.50

To:\ (”-— -6k 5

lyy ‘4.8%(-0&)(.%7)2(2) 4+ -1206 (‘2)/|2 = 0.(30
For b~ 0% 3

Dor = a24(or)(a0?(R) + '¢° (/0 o.8%0
Fof\ F . \loe 3

Tww = 4.26(169)(99)(2) + ""°°C">/n = ool
FDR F= .120 s

T = 426 (o) (a7 () + 2P g = 170
FoQ F- 130 -

T = 474 () (33si@)+ 2D = )asas

MaTeriaL 14-9 PH StesL )
ComPRESSIUE Buekiing ALtowases AT COO°F.

t= 0.0co  Gea = 25,200PS1

0.-0¥0 44 690
O.-100 {0,000
0.120 101,000
0.130 113,000 .
_169_
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NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

-
A Bat NORTH AMERICAN AVIATION, INC. pacENo. 1.9 of
pagpaneo ov: A BATENAN BPACH and INFORMATION SYSTEMS DIVISION

CHECKED BY: _REPORT NO.

e Mi3DAS STUDY —RADIAL SKID . | moos no.

Sxip Housing,

A/'504O Vi v 9,333
‘ I
L} i | I8¢, ccols s,
. 277 Vo1
37 X N 14,373 L3

BENmNc, At xX
M: §o4o (27) = 136,080 Ly NS,

SeeTien PROPERTIES (9ECT1N XX\)

‘a

Jo e

020 @? @{jl\'_'_{_mo ‘ |

Ivew | Aremn “Max | AN xyv | Mun ST 1o
®© |.161 [243].392 |1.a30] 3100 |.00026
® AT LAS | 222 286 | o) 017300
®@ | .16 071 .evt | 9%a| .1390 I.Ooozg
@ | 128 | .04| .005 | 360 .11 %0 00006

AL 630 .R9%1 |.o7’$52
Yun = €32 . 1.00 898 |
$GAB 67163
[, Liste 05) . 153, 000 PS]

“1% GT16% (2)

MS . 15¢ooc _ | - 0.03
152,00 O
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NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

. T NORTH AMERICAN AVIATION, INC. .
PREPARED BY: A.BA'EY?AFI S8PACE and INFORMATION SBYSTEMS DIVISION PAGE NO. \ 6 oF
CHECKED BY: REPORT NO.
e Mispas STupY - RADIAL SKID | e v

Sxw Houswg
SeeTiow M2 Fiange Rewoivg

.‘7\6.w Lﬂf%\?W_—s

.33

<+ 2 2
» Z2.bd". .ac
G G
= .01125
o L
? —— 3
g IO -© S ot
\ 10‘ /'P
~ - |
= \\\‘ pq 'i(,,l
FMAY = |}, 2c0 R _(I.K'S)
- I
P‘i . \0\320(4) + e° = 100 LR
P. 1L200 43100 () : (0,150 | .

X
Mo _ 10,150 (3%) (133) . 2560 Ly Des
7‘

j . 2See ., 298000 PSI
& RPN
Allowasue Ar Goo® F \fit4 BeEwding Mobgrus - 230,000 PSI.

MS . 236,000 _| . 0.ot.

AAd 000
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NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION K

PREPARED BY: ATEMAN NORTH AMERICAN AVIATION, INC, .
A B BPACEB and INFORMATION SYSTEMBS DIVISION PAGE NO. ‘ 7 of

CHECKED BY: REPORT NOC.

e MispAS OTUDM - RabiaL SKiD

MODEL NO.

Art Henr Swiawn Outer Ring (71 Rap)
Load On Ring Inpucen By Swids.

£ Up Loabs + ve

/Aa/ o Lo S\
1 B . ] .
: 1 \ o K\D@
Y v

_I*—SK\DQ) A

Load On Ring AT Swo @ = 9333 Lz (Rex Pacz 1.1)
Tosx@os Aroo~ Cewtroin - ‘13'33(¢i|> = ‘34‘1)000 TS
2\"2 s 2(M%+2(3s5)°] = 15,122

Renerions A pup C
— 249,000 (355) _ 3337

[ S

15,122 e
P = T 1990 = 18%% = = 23545 Ly .
EACT(DN‘E_ 849000 (1)) _ 9333
\5,122 G
= T 3370 - ISSS = -~ §S25LB .
Kenevions D Ao F
= 9% 0 - |88 S = 435 La
Renction €
= 3970 - \sg8 = 24418 Lv.
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NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

movsnp oy A BATENAN | NORTH AMERICAN AUATION NG, | mctno 12 o
CHECKED BY: REPORT NO.
e Mispas STupy -~ RAbiAL Suid oo Mo,

Loan AT Skn @ ~ 9333 1,
Torque ABovT CenTRoOm = 4333(Q1) = 249,000 L3 g

Za® = 4(c15)° = Is150
ReweTions A Awn D
= — 9333 . ~-18%8% L®
G
Renetiony B Awp €
. — 249,000 (G18) _ 1555
' 15,150

~ 3440 - 155%S = — 4795 LR
Renevions F Awpy €

= 3440 — 15585 = 125 L®.

ToTAL ReACTiong

A= -3%545 - \353 = -5100 LR

B * -5825 -499%5 = -—105%0 L%

C = =-33545 =499 = - a,540 L%

D = 435 -~ (%55 = - 1 120L3

E= 2415 + 1R85 > 4300 LB

F = 438 + 18RS =z 2320 LR
Consiver Ring Com AT A Awp DETerming Static Morment
Momewt AT°B =-2550(61.5) = - 157,000 L3 1wk,

MotaenT A1 SKid

= = 2550 (71 = 10,526 (35.5)+ 9333 (45.5)
18\, oo ~ 313,000+ 424,000 = \‘30)000 Lg l\lS
Moreus Ay C

= - S50 (615) - 10,520(61s) + 9333 (72.5) 49333 (45.9)
= =157,000 ~643,000 4 732 000 + 424 000
= 35)000 Lg INg.
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

. - NORTH AMERICAN AVIATION, INC, \.
preparep By: A L BaTEMAN BEACE and TNrCIICAN AVIATION. INC. PAGE NO. ‘1 OF
CHECKED BY: REPORT NO.

DATE: MiSDAS STupy - RADIAL SKID | m o

S7atic Momant On AFT HewT Jmiewd Ring ('H"F-?AD_>
Moment AT D
= =10,520 (61.8)+ 92333 (78.5) + 9333(‘1 ~)-%s4o (e1s)
* - C4% 000 +732,000 +R47 000 ~525,00
= 406,006 L3 Ing,
Moment Av E
* =2550 (-61.5) + 9333 (45.5) ~8540(Cls)— 1126 (61%)
* 187000 + 435 000 — 325,000 — (3,500
= — 11 See Lz Tus
Moment AT F
~ -850 (-¢18) —lo,520(-61s) + 9333(-785)
* 9333 (-45.5) = 1126 (&15) + 4330 (61.5)

= |§7,000 % G4% 600 —7'32)000 -425 000

- (¥,500 + AL4 . 000
= —-15¢,80” Ln Inc
Movient A A
= 10,520 (=415)+9M3(-725) + 332 (-))
—9540 (- C1.5) + 4300 (C18) + 2320 (1)
= (4% ,000 =732 060 -%éﬂﬁoo + 325,000

T264 000 + 142,500
= 0.
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

- ORTH AMERICA AVIATION, INC. o
PREPARED BY: ABA TEnaN gPACE and INFORME’I‘I:N SYSTEMS mvxsxc}x:v paceno. 1 -10 or
CHECKED BY: REPORY NO.
oare . MispAS Stupy - Rabian Skin ——

Sueng On ArT Heat Swiad Ring (71 Ran)

A= 1 as50
B: ~2550~10,520+439333 = -3 733
@ = -3733 + 9333 = § ¢oo
C = R6oo -3F4o0 = -7 940
D= =294 - | |20 T —-4060
E = -4060 4 4300 = 240
F= 240 4 23320 : ASG6CO
X
|-

L T/
A B

< D c  F A

SHEaR DIngRAM

fsclx = -850 % -18CCx+2R00%E —=294D ¢ ~4060 x
+ 240% + AS50%
3 = - G366
e = Y © = = loGl| L"-))_
fS S

Moriowt Doe b KedumpanT ch-*qR (w\.,‘)
A< AAass D = O
At R A C = -ioci(es) <+Gsaoo La Ins

At Suis () =106 1 (1) = +75,% 0 Ly Ing
A’r C Awn F -—loé\(—G\.S3 ‘--6‘3)7\00.

L1

f*}qo ‘-V)"L < ‘7§"’>oo((.';'x,> +7§“:}v., ;'.)(l.irx,)

= O .
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

»
.

. NORTH AMERICAN AVIATION, INC. Ll
PREPARED BY: A.BATC“AN SFACE and INFORMATION SYSTEMS DIVISION PAGE No. \ oF
CHECKED BY: REPORT NO.

oATE Mispas Stupy - RapiaL SKid OOEL NO.

Revunpant Motiewt On ArT Hent Swico Riwg ('HRAD\

st APV ‘IS'))ooe(Scx)-(- \30,000 (.Qg:)-\—')\")\l)oco (.'2§1\)
=+ 3%), 000 L'X)'i- S8 c00 (Suc) + 40(.,000(.§'x,)
= 18¢,Seo0 ('x,)
= 46C,150%

Me = 46¢,750 /¢ = 77 790 Ly Tny
‘(V\sa&* {‘Ngamﬁ- I"MQ e = O .

“nL Moriew

To

A= o =17,79c + © - 77,790 Lz T,
B -187,co0 "7-7)7°]O + 65 280 ““|GQ|)§30

2T 120,000 —'77)7(10 + 7%, 3c0 = 27,510

C~= Q1050 =17,7190 * ¢S5, 200 = 3338 410

D7 40coee =77,79 + o 322,210

€E° =~ 1,560 =77,790 = 65,200 = ~-154,490

F= =1Is¢8eo ~77,7990 =¢S5, 266 = -2%9 490

foirges On quq
A‘%:Utnmq SK 1D Hougqu-ﬁ\ 'REDC""%,THE —l-ox‘\’q(.s\;- AM'_) T,ac‘
—R_‘_N’Q AR& FR[‘.E To T\AHST F,),'t—l'\,/(;t'u) HQUSrMﬁS
(RN ]’]Ax \-(’C);(QOL" < \4)27'3 (cl-g) N
= 34,2006 Lu [s9 .
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NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

SJEt‘[\oM —PROPERYH?S

moe s b Bitend  NoRTH AMERICAN AvATION NG |metno (112 o
CHECKED BY: REPORT NO.
oare MisDAS Stopw = RADIAL SKID | ,pm o

Art HenT Shiew qu(jl RAD)

=

MaTeriaw 15 € Taieg

Strees o Ring Dot T Bewping.

[, 33240 Gag
37992
ALLO\IJA‘BL\‘: STR(_—Q% A‘( Goo"‘:

1S,

—7) r
@
3> — 3.2%
& |
o
BN
Item | Aren | Mua Awa® | To |
@ |.506 | 1547 | 1.210 .00103
@ [.234 |1.391 | .453 .000587
@ | .740 o o .47
@ L2734 | 139 4573 . 00057
® | .S506¢ [1.547 (1. .210 . 00103
3.32¢C .47320
3.32¢C
3.799 20

145 coo P.ST.

|§¢ ¢oo

145,000

|$¢ 000 P’

-1

0.0% .
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

PREPARED BY: A.EATET\A'J

NORTH AMERICAN AVIATION, INC.

PAGE NO. \‘\3 OF
BPACB and INFORMATION SYSTEMS DIVISION
CHECKED BY: REPORT NO.
DATE: MisdAS Stupv - RADiaL SKid MODEL No.
Art HenT Shied Ring ('HT\’AD>
ShEnR STRESS
Top\qu =3¢ 000 LR
T Shemiy = §5,6oolR
i
iy
= =]
01/ = L . 13¢,e00 - 12,500 LB/I‘N-
2 A 2(15) (3.1
{,~%see | So.cc0 PSI
4% 15 G

Direet SQueng R
ﬂ/ - \L_Q . Scoof \.3%\) . RAooc La/lu .

I 3.749
,( ML - 12,800 7351
S - 158G
TeaL Suenzk OTRess = 0,000 + \QTa =

IR0 PSSl
Aiovanie: Suenr Strest At Goo®F : 10§ coaPST.

1MS

. loSece 4 G. 13

92 doo
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NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

. T NORTH A , 3 .
mer o A STenoy | NORTH AMERICAN, AMATIONNS,  [rerre 114 e
CHECKED BY: REPORT NO.

oATE: Mispas Stupy - RADIAL SKID . | uoom ne.

Ars Hent Swiew Tvwer Ring ('34"RAD>

Assored Sheny SupPorT

¢
)i ‘
17.2 N
Do4oB. [ ' S040LlR
!
Max SupPoRTING SHERR . _Go4o 5¢7 La[ .
12.8 (.5)
Ring Embmq = WL | Sede(17.%) . 14950 Lo 8.
decTion PROPERTIES
@/—:_! ,_‘_.‘1'»
I
0%
T 2.50
) .
Ivem [ ARea | Mwa | AMun?] 1o
O 013¢ [ 1.1 |.0193 | .0c0007
@ 20060 o o .lo40
® 0136 | V21 | 0199 | .goonT
|.2272 .0392 | .vo414 |
.039%
. 14394
/(B ‘4 \qso (lnf)\g) ‘3(.\,\*301"; PSI
1434
[\18 = 1S¢,223 U - O.Q,O
\ 20,000
=179 -

SID 66-409



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC. pacENo. &) oF

SPACE and INFORMATION SYSTEMS DIVISION

PREPARED BY: A-BATE‘mN

CHECKED BY: T NO.
DATE: MisDAs Stupw - RabiaL Skid ODEL NO.
Groowd Impact Connimion (VerTicaL)
KE = w N5
9.
For 12 Twen Strot “Travel
: P = \n V?'
[ (\)'X% .
1'_-\_“
L, 1
1 1N
N— | . H
4
ImpacT Load ©
P - 4,000 (\%)q‘(l.%’s) = G5 000 Ly ULt,
A (3R
M= 035V = 35 (¢S 0e0) = 22,750 L3
Assorae GRound Contaet = 34" Rad ,
Aacn TT(34)° - 3c¢ao Ny
Prestome On AFT WlS & esooo/364o - 17.90 PS.I.
Min Skin Trex NESS . = .02 -
Moor Stress To Cowtee Paver = Pﬂtt
\ - e
- \2(15)6(072;) = 35,500P51T |
‘ Fiaw TMaRg v

(oe Suenz STress AT 34 Rap

f . 6Speo L 122PS T
s 34(2)71(2:5)
g T’lm?c;rrd.
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NORTH AMERICAN

AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

PREPARED BY: n .BATGH#\X

NORTH AMERICAN AVIATION, INC. raGENO. 2.2 oF

SPACE and INFORMATION SYSTEMS DIVISION

CHECKED BY: PORT NO.
oare MiSDAS STODY - RADIAL SKID | ,ce o
Groowd IMpaet ConpdiTion (VERT\CAL>
Bewding On Art Nent Swiews Rivg A1 717 Rad.
Suenw At 7U'Rap . 6Sese | jacin /I
207) N
| N S E—— T4.40 *_..:/RZ Ris o
‘ V..

£

LN

[

B B,» 74.4(i4¢) = losco LR
M. w8 | 14c(14.49)® . ¢7,360 La Ns .
RS V2
(P.) - G7)3°° (\'C?\.g) = Q%)%OG P%-\;
- 37992
Higu Marqin .

1 1] |
IR R B R
M:MGLB/I\;

_

Sun-STRocTORE
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NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

. NORTH AMERI . . ,
PREPARED BY: ABL\TE\-\R ) SrACH ana T E C,a N, Q‘%L;LISODP:VI'STO% PAGENO. 2+ 3 oF
CHECKED BY: REPORT NO.

paTE Misbas Stuny - Rabiaw Skip ODEL No.

Groont Trneaet Connrrion (17°)

RE&UL‘\’ANX \/ERY\C AL \)E\oc\‘rb?

\Y) = 1S a8+ 20505
m = 15 (.9975¢) + 2o (0276 )
e
L ) = 21.43c Fr [ Sec .

KE = V3
2
Teew Tox 1R Shear STrRoT
StRoUS
P wWwyv®
l 2 (32.2)(1)
53 .28 TP
P : l4,000 (?\t.ﬁ’ac_)“zqg.ﬂ)_ = 137 o0ce L3 .
2 32.2)

DisTRiBuve Ty Lead To Tue Ooter Rine, A1 T Ran
Eypreesed Tn Ly [ Do

Menw Lenn o 13%,000 = 317 Le/iu
T (2) ()
May Lom) « 312 (7\-&%’3-75') . 534G LE/IN
&l ,
Miw Lonn . 312(7:-‘:’%-“\}_ - 14.5 L1 [ v
xa

RATG O% GHA sac O Lof-\D Pr’R DEG'»’—{uZ; ‘
s SA-T74.¢ 0 2,62 lyjliw.
(20
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

- A.BaTEman NORTH AMERICAN AVIATION, INC. 2.9
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APPENDIX B

MATERIALS EVALUATION

The materials requirements for the MISDAS application are derived
from the Apollo mission and the operational and loading requirements of the
landing impact attenuation system. The structural components that form
part of the aft heat shield (landing legs, skids, skid housings, and associated
fittings) were designed for a temperature range of -150 F to +600 F. These
values, which represent the extreme temperatures at the ablator/heat shield
interface, are somewhat conservative for structural design. Structural
components attached to the inner capsule are designed for its anticipated
temperature range of -150 F to +200 F. In general, the materials used
for similar applications to Apollo are satisfactory for the MISDAS system,
and no material development programs are required for the structural

- members.

The parameters of major importance with respect to materials selec-
tion for a land landing system are strength (Fy,,, Fty), density (p), toughness
(notch strength, impact resistance), rigidity, producibility, and corrosion
resistance. The high-strength aluminum alloys, corrosion resistant steels,
and titanium alloys all possess these characteristics to the degrees shown
in the data presented in Table 14.

The structural members of the heat shield, landing legs, skids, skid
housings and associated supports and the shock struts could be fabricated of
a high-strength corrosion-resistant steel, such as the PH 14-8 Mo material
used for the Apollo heat shield. This alloy is readily weldable and affords a
desirable combination of strength, toughness, rigidity, and corrosion
resistance. The use of PH 14-8 Mo or equivalent high temperature metallic
heat shield structure provides thermal protection in case of a pPremature
failure of the ablator. The corrosion-resistant steels are favored for these
parts over the high-strength titanium alloys because of superior fabrication
and welding characteristics and greater ductility and toughness.

A superalloy such as Inconel 718 may be used for the skid thruster
of the radially extended skid system. This material provides a significant
combination of high-impact resistance, notch toughness and strength at
cryogenic, ambient, and elevated temperatures. It readily welded and
brazed to it self and to other materials such as the type 18-8 stainless
steels (304L, 321, 347, etc.).

- 211 -
SID 66-409

LED.
CcErERING PAGE BLANK NOT FILMED
NS SRy e



NAA=ApO ;
Temperat

Item Limirtatic

Stainless Steels
PH 15-7 Mo (Rl 1050) -150F
PH 14-3 Mo (BCHT 1050) =200

A =286 -0 F
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Steel Alloys
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18-8 Mar=Aging New
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TR =Reference 11
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1ISDAS Study Project Material Properties and General
acteristics of Candidate Alloys, -150 to 600 F

-150 F Properties
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F. /P
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Impact
(Charpy v)

Other Characteristics
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— o

Good metals joining characteristics
Good corrosion resistance

Poor weldability, good brazing
characteristics
Excellent corrosion resistance

Good metals joining characteristics
Acceptable corrosion resistance

Excellent metals joining characteristics
Good corrosion resistance

Poor metals joining characteristics
Acceptable corrosion resistance

Excellent metals joining characteristics
Excellent corrosion resistance

Good metals joining characteristics
Requires protective coating against
the atmosphere

Good metals joining characteristics
Good corrosion resistance

Low temperature thermal (900 F aging)
treatment facilitates ease of fabrication
Requires protective coating against

the atmosphere

Coefficient of thermal expansion
varies significantly from PH 14-8 Mo,
the Apollo heat shield material.
Titanium welding requires special
equipment. An inert atmosphere weld
chamber is preferred. Welding most
MISDAS components in a chamber
would be impractical.

Good corrosion resistance against the

elements.
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The fasteners and threaded members should be fabricated from steels
of high strength toughness and corrosion resistance in the temperature range
previously noted. An alloy that meets these requirements is A-286, the
standard material used for Apollo fasteners.

The thin-walled bellows around the rocket nozzles and shock struts may
be subjected to high temperatures and corrosive gases from the retrorockets.
These members must be very flexible, thin-walled, weldable items. Depend-
ing on actual temperature requirements, stainless steels, such as Types
304L, 321, and 347, or superalloys, such as Inconel 718, can be utilized.

Aluminum alloys, such as those used in Apollo bracketry, reinforce-
ments, and attachments to the inner structure, are considered satisfactory
for similar applications with the MISDAS installation.

The requirements for heat shield ablator and ablative edge members at
the interfaces between leg segments and fixed heat shield are identical to the
Apollo and AES heat shield criteria. The ablator must provide thermal pro-
tection; joints must be sealed against ae rodynamic entry heating; and movable
legs must be extendable after entry. The Avcoat 5026-39 basic ablator
developed for Apollo is applicable to the MISDAS installation. Seal materials
require chemical and physical compatibility with the basic ablator during
cold soak and entry conditions.

Figure 40 illustrates a feasible approach to a hatch seal concept. This
concept involves use of a molded seal bonded to the fairing, a faired seal
compound, and a release film. The molded seal offers a more precise f{it,
and the troweled or sprayed faired seal acts mainly as the abrasion resistant
exterior seal. General Electric RTV560, a material already qualified to
AVCO and NAA S&ID specifications, or Dow Corning DC 950 could be used
to fabricate the molded seal. (Reference 12)

Larodyne 3310-23-4 is a promising material for an easy tofinish and
repair seal fairing that can be troweled or sprayed on, to be used in conjunc-
tion with a molded seal to fill plugholes and pop plug voids and joints. Among
its properties are (1) low density of 30 pounds per cubic foot, (2) excellent
dimensional stability during ablation, (3) easily repaired, and (4) easily
bonded to structures using cold or hot bonding agents specially developed for
use with Larodyne.

Two materials are proposed for use as release films: Teflon, which
ablates with a clean, no-char surface, and Kapton polyimide. Both materials
are able to withstand temperatures of up to 600 F. These films can be
obtained in thicknesses varying from 0. 001 to 0. 010 inche s, with or without
pressure sensitive adhesives.
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Figure 40. Hatch Seal Concept

All of these materials require limited investigation of their compati-
bility with Avcoat 5026-39, volatility, shape, and volume stability under
entry conditions, fusion and bonding to adjacent surfaces after being exposed
to entry heat, and shear strength of the remaining material after entry to
determine the force required to deploy MISDAS,
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APPENDIX C

LEGGED - A FORTRAN IV COMPUTER PROGRAM FOR THE SOLUTION OF
LEGGED VEHICLE IMPACT DYNAMICS
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. FOREWORD

LEGGED is a FORTRAN IV language computer
program developed by the Structures and Dynamics
Department of North American Aviation Inc. /Space
and Information Systems Division, for National
Aeronautics and Space Administation, Manned Space-
craft Center, under Contract NAS9-4915, '"Mechan-
ical Impact Design for Advanced Spacecraft, The
program can be utilized to analyze the dynamic

stability and impact attenuation requirements of
. vehicles landing on separate legs. It was developed
by D. N. Herting and J. R. Partin, The Project
Manager for MISDAS has been A, I. Bernstein and
the Project Engineer has been A, S. Musicman.
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INTRODUC TION

LEGGED is a FORTRAN IV computer program which is effectively a
three-dimensional mathematical model of a legged spacecraft. When initial
conditions, i.e., landing parameters, are properly loaded, the program
simulates the dynamics of a real spacecraft making an earth landing. The
action of the earth on strut tips produces forces and torques on the space-
craft. The laws of motion are integrated using small time increments to
produce linear and angular acceleration, velocity, and displacement time
histories.

The program has very flexible input sequencing since it uses the
FORTRAN IV feature, NAMELIST. It is therefore useful for making param-
eter studies. Loading time for the object deck is about 30 seconds and
computer time per landing case is on the order of 10 to 15 seconds.

The geometry of essential points on the spacecraft is described by the
coordinates of each point in a coordinate system fixed to the spacecraft
(capsule initial system). For example, the center of gravity is located by
loading in its three coordinates in the capsule initial system. The same
approach is used to establish the location of each strut end. Any number of
struts are allowed and each may have different stroking properties. However,
once a strut is located on the vehicle, the strut tip deforms (moves) in a
straight line toward the strut end attached to the spacecraft.

The properties of each strut must be expressible as a load-stroke
""curve'' which can be formed by a series of straight lines. The principal
strut property is plastic deformation, but provisions are made for the inclu-
sion of velocity damping and elasticity. The struts (legs) are considered to
be massless.

The ground is considered as a rigid plane having a constant friction
coefficient with the spacecraft's legs. The ground may have a slope and a
direction of slope.

A partial list vehicle input data for the program includes:

1. Number of legs

2, Acceleration of gravity

SID 66-278
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3. Coordinates of c.g.

4, Mass properties

5. Coordinates of each end of each strut

6. Load-stroke properties of each strut

The initial value (landing parameter) data includes:
1. Horizontal and vertical velocities

2. Roll, pitch, and yaw

3. Angular velocities

4, Ground slope and direction of slope

5. Friction coefficient with ground

6. Parachute swing angle and direction of swing

The programs outputis principally inthe form of CRT plotting. Time
histories are plotted from the instant of impact for the following quantities:

1. Acceleration, velocity, displacement of the c.g. in a direction
normal to the earth.

2. Roll, pitch, and yaw measured relative to the earth (earth y-z
coordinate axes from plane of ground)

3. Stroke of each strut (versus time)

SID 66-278
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SYMBOLS AND DEFINITIONS

Variable Code

1) Input Variable
2) Stored vs Time for CRT
3) Not used in this program version

Symbol Code Definition
A Dummy scale factor
ACMAX Maximum acceleration on capsule, ft/sec?
AGE(I) Acceleration vector of c.g. in earth coordinate system,
ft/sec?
AGES(1, J) 2 Acceleration, ft/sec? vs time, sec
AGT Total acceleration, ft/sec?
ANG(I) Capsule angles relative to earth coordinates, deg
ANGS(I, J) 2 Angles, deg vs time, sec
ARGI Dummy argument
ARG2 Dummy argument
ARG3 Dummy argument
ARG4 Dummy argument
ARG5S Dummy argument
ARGb6 Dummy argument
ARG7 Dummy argument
ARGS Dummy argument
ARMV(I) 3 Not used in this program version
-3 .
SID 66-278
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Definition

Symbol Code

AXMAX Max angle x axis makes with ground normal, deg

CPHI cos (phi)

CPSI cos (psi)

CTHT cos (theta)

DAMP(I) 1 Damping constant for each strut, lb-sec/ft

DE(I) 1 Elastic constant for each strut, ft

DELT Total strut deflection, ft

DMIN Dummy variable

DSLP 1 Direction of ground slope {(angle from absolute z axis),
deg

DSTS(I, J) 2 Strut strokes, ft vs time, sec

DSWG 1 Direction of parachute swing (angle from absolute
z axis), deg

DT Time increment used in program, seconds

DTCE(IL, J) Transfer matrix increment of TCE

DTO 1 Real time increment used as input, seconds

DVPC(I) Change in velocity at strut tip - capsule system

DVPE(I) Change in velocity at strut tip - earth system

DWGC(I) Change in angular velocity at c.g. in capsule system

ELF(I) 3 Not used in this program version

EL2 Length of strut-squared

EMU Friction coefficient computed by subroutine FRIC
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Symbol Code Definition

ENTA(I) 1 Principle moments of inertia of vehicle about three
axes, slug-ft2

ETA(L J) 3 Not used in this version

FE Strut force modified by elasticity and damping

» FGE(I) Force on capsule c.g. - earth coordinates

FMAX(J) Maximum force from each strut

FORC(J) Actual force from each strut at any time

FORS(I, J) 1 Force magnitudes defining the load-stroke curve of
leg j, 1b

FRC(J) 1 Friction magnitudes which define the coefficient of
friction EMU, dimensionless

FS Force in strut along motion vector

FSC(I) Force vectors on strut tip in capsule coordinate system

FSE(I) Force vectors on strut tip in earth coordinate system

FSTS(I, J) 2 Force magnitudes, 1b vs time, sec

FV Force on strut due to velocity

G 1 Gravitational constant, ft/sec?

GV(I) Gravity vectors in earth coordinate system

I Subscript index

IP Index for plotting prints

IIPRINT 1 Input-output control parameter

EIPT Integer increment used for spacing plotting points

i.J Subscript index
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Symbol Code Definition

K Subscript index

N Subscript index

NDP Number of iterations, IPT, between plotting

NS 1 Number of struts on vehicle

PCH 1 Parachute pitch hang angle, deg

PsI Angle psi about z axis

PSTR(J) Total amount of plastic stroking, ft

PTEST(I) 1 Plotting control variables

QGC(I) Angular velocity vectors of capsule, rad/sec

QGCS(1, J) 2 Angular velocity vectors of capsule, rad/sec

RAT Dummy variable

RATIO Dummy variable

RBCI(I, J) 3 Vectors locating body point j in capsule initial

system, in.
RGA(I) Vectors locating the c.g. in absolute coordinate system

RGAS(I,J) 2 Vectors locating the c.g. in absolute coordinate system,
ft vs time

RGCI(I) 1 Vectors locating the c.g. in capsule initial system, in.
RGE(I) Vectors locating the c.g. in earth coordinate system
RGES(I, J) 2 Vectors locating the c.g. in earth coordinate system,

ft vs time

ROL 1 Roll angle used as input - about vertical axis, deg
RPC(I) Location vector of a deformed strut point in capsule
system
-6 -
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Symbol Code Definition

RSC(1,7J) Vectors locating strut tip j in capsule coordinate
system, ft

RSCI(I, J) 1 Vectors locating strut tip j in capsule initial system, in.

RSCIL(I) Vectors locating strut tip j relative to capsule origin in
earth coordinates

RSE(I) Vectors locating strut tip in earth coordinate system, ft

RSFC(I,T) Vectors locating fixed strut tip in capsule coordinate
system, in.

RSFCI(1, J) 1 Vectors locating fixed strut tip in capsule initial
system, in.

SLP 1 Ground slope angle measured from ground normal to
absolute x axis, deg

SMAX Dummy variable for GRAPH

SPHI Sin (phi), dummy variable

SPSI Sin (psi), dummy variable

STHT Sin (theta), dummy variable

STRK(I, J) 1 Stroke magnitudes defining the load-stroke curve of
leg j, ft

STROK(J) Present stroke magnitudes at any time

SWG 1 Parachute swing angle (measured from absolute x axis),
deg

TAE(L J) Absolute system to earth system transfer matrix

TCA(L, J) Capsule system to absolute system transfer matrix

TCE(L J) Capsule system to earth system transfer matrix

TCP(1,7) Capsule system to parachute system transfer matrix
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Symbol Code Definition
TERM 3 Stability test parameter
TEST 3 Stability test parameter
TGC(I) Torque vectors on capsule
THT Angle 6 about x
TIME Real time - seconds:
TP(I) Estimated c.g. angular acceleration vector due to strut
TPA(L J) Parachute system to absolute system transfer matrix
TPLOT 1 Time interval between plotting points, sec
TSC(I) Torque about c.g. due to each strut - capsule system
TTIME 1 Total real time limit per case, sec
TYM(I) Times at each storage point
TYMJI(I) Points in time for labeling strut strokes
USC(1, J) Unit strut vectors along strut j in capsule system
USE(I) Unit strut vectors along strut j in earth system
VGA(I) Velocity vectors of c.g. in absolute coordinate system
VGC(I) Velocity vectors of c.g. in capsule coordinate system
VGE(I) Velocity vectors of c.g. in earth coordinate system
VGES(1,7J) 2 Velocity vectors of c.g. in earth coordinate system,
ft/sec vs time
VH 1 Initial horizontal vehicle velocity along absolute z axis,
ft/sec
VL Vector length
VPE(I) Velocity vector of strut tip
-8 -
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Symbol Code Definition

VS Stroking velocity of strut

VSC(I) Velocity vectors of strut tip in capsule coordinate system

VSE(I) Velocity vectors of strut tip in earth coordinate system

vT Tangential velocity at strut tip

vv 1 Initial vertical vehicle velocity along absolute x axis,
ft/sec

WGC(I) Angular velocity of capsule in capsule system

WGCS(I, J) 2 Angular velocity of capsule in capsule system rad/sec
vs time, sec

WHOA Test variable to print reason for stopping

WPCH 1 Capsule pitch angular velocity used as input, rad/sec

WROL 1 Capsule roll angular velocity used as input, rad/sec

wWT 1 Weight of vehicle, 1b

WYAW 1 Capsule yaw angular velocity, rad)sec

XANG Angle between capsule x axis and earth normal

XLIM Dummy for CRT plotting

YAW 1 Parachute yaw hang angle about z axis, deg
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ANGLE CONVENTIONS

The angle conventions used for input are selected to decouple the
various random parameters from the fixed-hang angles. The capsule is
rigged on parachute lines at nominal pitch and yaw, but the deviations are in
terms of a parachute swing angle and a direction of the swing angle. In
establishing the hang angles the order of rotation is pitch and then yaw. This
order leaves the capsule z axis in the plane formed by the parachute z axis
and the shroud line axis (chute x axis),

Roll angle was selected as the random parameter which defines vehicle
orientation to the horizontal velocity. Horizontal velocity is always taken to
be in the direction of absolute z and vertical velocity parallel to absolute x.
These velocities then form the reference plane x-z from which roll angle is
measured. Roll angle is seen in Figure 1 to be measured about a vertical
line and from the velocity plane.

Parachute swing angle and direction of swing are shown in Figure 2.
Swing is defined as the angle between the capsule x axis and vertical
(absolute x). The direction of swing is the principle angle between two planes
containing a vertical line (absolute x). One plane contains the capsule x axis
and the other contains the capsule z axis. It should be noted that direction
of swing is measured from a vertical plane containing the capsule z axis, but
roll is measured from the velocity plane.

The landing surface may also have a slope and a slope direction, as
defined in Figure 3. The dynamics of the vehicle are calculated relative to
a fixed coordinate system placed on the surface. Like the swing angle con-
vention, this system (earth coordinate system) does not rotate with the slope
direction, but "wobbles' with its z axis always in a vertical plane. The
initial capsule roll angle measured from the surface coordinate system is
always nearly equal to the input roll angle,

The output angles of the program are measured between the capsule
axes and the surface axes. The order of rotation is x-y-z or roll-pitch-yaw.

The angular velocities, however, are vector components in the capsule
system.
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VERT.

Xc|
U ROLL

Figure 1. Roll Angle Definition
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STRUT FORCE CALCULATIONS

The forces in the struts consist of a force FS along the direction of
motion. This force is generated by the strut stroking properties and another
force perpendicular to the stroking vector, which is implicitly known from
the friction constraints. With a given friction coefficient and a sliding
velocity, the force tangential to the ground is equal to the product of the
normal force FN and the coefficient of friction n {1, and its direction opposes
the sliding velocity. The total force vector FSE on the strut tip due to the
ground has a known direction and an unknown magnitude,

)
FSE = FN J- uV.

y 4
- v,
where Vy and V, are normalized velocity components.
The scalor product of the force vector FSE and a unit vector USE along
the strut stroking motion is equal to the strut axis force
FSE - USE = F§

or

= USEx - p. Vy.USEy - p.V,. USE,

et

Since FS is known, FN and FSE are known. The force on the capsule at the
strut tip may be resolved into forces and moments at the capsule c.g.
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VEHICLE INPUT DATA

All the data which describes a specific vehicle and program control
parameters are read into the computer by subroutine INPUT through a single
command, READ (5, DATAl). Variables which are read into the computer by
this command appear in subroutine INPUT in NAMELIST statement,
NAMELIST/DATAl. An example of vehicle and control data is given in
Appendix B immediately following the listing of the complete FORTRAN IV
program. Definitions of all program symbols are given in the List of
Symbols with input variables designated by a code number.

The vehicle's center of gravity is located in the capsule initial coordi-
nate system by the vector RGCI. Its three components are illustrated in
Figure 4 and typical values of the components are given in the input data list,
DATAI in Appendix B.

Locations of each end of each strut on the vehicle are read in as vectors
RSCI, movable strut tip locations in capsule initial system, and by RSFCI,
locations of attachment points in capsule initial system. Refer to Figure 4
for a pictorial illustration and to Appendix B for input examples.

Inertias and vehicle weight are read in simply as ENTA(l), ENTA(2),
ENTA(3), and WT. The inertias are about principle vehicle axes passing
through the center of gravity.

Load-stroke properties for each vehicle strut are determined by a
"curve'' which is defined by a maximum of 10 points. An example is given
in Figure 5 in which six points (1-2-3-4-5-6) define a plastic load versus
stroke curve. Input data variables defining the curve are FQORS(I, J) and
STRK(I,J), I=1,2,....,10, J=1,2,....,NS, where NS is the number of
struts.

The purely plastic stroking properties of the strut presented by the
curve 1-2-3-4-5-6 can be modified to include elastic deformation. For strut
J a distance DE(J) is defined as the amount of strut is elastically deformed
(stroked) as it is loaded or unloaded. With DE(J) having a positive value, the
load curve is specified (in Figure 5) by line A-B-2-3-4-5-6 where line A-B
is elastic deformation. Assuming that the strut has been stroked to point C,
the strut will unload elastically along line C-D. If a load is reapplied, the
strut will assume the load by following line D-C-4-5-6. Setting DE(J) = 0,
J=1,2,....,NS will, of course, provide purely plastic struts.
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Xc1
FGQ\I_”.)
.(,'}'\I/L/
2
CENTER OF ‘
GRAVITY -+

RGCI(I)

RSFCI(I,J)

CAPSULE INITIAL
SYSTEM ORIGIN

(0,0,0) ~
e STRUT J
% "
,&\'Iz \USC(I,J)
& B
y RsCI(3,4) ____Jrscr{nJ)
CIl
Notes: Point A is fixed to the vehicle. Point B
contacts ground. Stoking is along original
line AB with respect to vehicle.
Figure 4. Capsule Geometry in Capsule Initial System Coordinates
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Figure 5. Load-Stroke Characteristic for Strut J Coordinates of Point I
Given by STRK(I, J), FORS(I, J)
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The strut elastic properties can be further modified through the use of
damping proportional to stroking velocity. A coefficient DAMP(J), J =
1,2,...,NS, is provided in the input data DATA2. A non-zero, positive
value of DAMP(J) will cause a strut load proportional to stroking velocity and
to DAMP(J), opposing the stroking velocity. (This velocity load will not
exceed the plastic load, F@RS), Again, a purely elastic strut is obtained by
setting DAMP(J) to zero.

Several miscellaneous constants must be read in with the vehicle input
data. They are the gravitational constant G, the real time increment DT®,
the total real program execution time TTIME, time increment between
plotting points TPLQT (preferably a multiple of DT®), and the number of
vehicle struts NS.

The CRT plotting may be omitted (or included) by assigning zero (or
non-zero) values to three variables PTEST(l), PTEST(2), and PTEST(3).
PTEST(1) controls plotting of roll, pitch, and yaw. PTEST(2) controls
plotting of acceleration, velocity, and displacement. PTEST(3) controls
plotting of strut strokes. Setting all variables PTEST(I) to 1.0, for example,
will cause three plates to be plotted for each landing. Setting all the
variables to zero will cause omission of all plotting.

Refer to Appendix B for examples of typical vehicle and control
parameter data.
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INITIAL VALUE DATA

All initial value data are read into the computer through a single state-
ment, READ (5, DATA2). (Refer to subroutine INPUT, Appendix A).
Variables which may be read in by this command are listed in the NAMELIST
statement, NAMELIST/DATA2. Initial value data for twenty sets of vehicle
landing conditions are given in Appendix C. Note that all landing conditions
are initialized by the first set of data following the first appearance of the
name DATAZ. Subsequent sets of data reinitialize specific parameters,
while all other parameters retain their original initial values. Initial value
and other input parameters are identified in the List of Symbols.

A program control parameter IPRINT must appear in every set of
initial values following the NAMELIST name DATA2. IPRINT must be
assigned either the value of one (1) or two (2). Figure 6 illustrates program

operation for allowable values of IPRINT.
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Start
" READ DATAL |

| (Vehicle Data) r

-

. READ DATA2 e
[T 7777 (Initial Values) - i
i ——— R i
SR
STOP | ?
if no more . |
data available J' '
Execute [
Program | |
£ |
" I
Output {
JPRINT = 2
Test IPRINT
d IPRINT = 1
}___ .

Figure 6. Program Operation for Allowable Values of IPRINT
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\

PROGRAM OUTPUT

The output of the program is controlled by subroutine QUTPUT and
consists of both printing and CRT plotting. Although a minimum of output is
used in this program version, several blocks of data are stored in COMMO®N
locations. A program user may select any combination of these variables
for plotting by modifying subroutine QUTPUT.

A sample of printed output from the program is shown in Appendix D.
This output corresponds to the vehicle data in Appendix B and to the first set
of input value data in Appendix C. The first line of printed output, following
the initial values, describes the reason for stopping normal execution of the
program. Three maxima are given for each vehicle landing. They are the
total acceleration ft/sec? of the c. g., the angle the capsule x axis makes
with a ground normal, deg, and strut loads lb and strokes ft. Final linear
and angular displacements and velocities in the earth coordinate system are
also printed in units of feet, ft/sec, degrees, and radians/sec.

Three plates of CRT plotting normally accompany the printed output of
each set of landing conditions (initial values). These plates are time traces
of several important parameters describing vehicle behavior. The first plate
(Figure 13, Appendix D) contains plots of roll, pitch, and yaw in degrees,
measured in ground coordinates. The second plate (Figure 14, Appendix D)
contains c.g. acceleration ft/sec?, velocity ft/sec, and displacement ft
normal to the ground. A third plate (Figure 15, Appendix D) illustrates
strut strokes ft as function of time.
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APPENDIX A

FLOW DIAGRAMS AND PROGRAM LISTING

The complete computer program, for the solution of legged vehicle
landing dynamics, includes the following:

Main Program
LEGGED (Figure 7)
Subprograms

INPUT (Figure 8)
START (Figure 9).
STRUT2 (Figure 11)
MQVE (Figure 10)
QUTPUT (Figure 12)
FRIC

ATUDE

TRAN

ITRAN

AXB

GRAPH*

*A NAA package for producing CRT plotting.
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NDP = TPLAT/DTf!
IPT = NDP - 1 |
IP = 0.0 |
TDE =00 !

neg

do not store variables

©
-

Figure 7. Flow Diagram of Program LEGGED (Sheet 1 of 3)

Store variables for output
1
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Transfer roll, pitch; yaw
to earth coords.

I

Print locations, velocities, angles, y
angular velocities; time

|

Store output for CRT graphing
]
i

Compute total c.g. acceleration
vector, AGT

l

Store maximum value of
AGT as ACMAX

[

Compute tipping angle XANG of
capsule x axis with ground plane

Store maximum value of|
XANG as AXMAX

i e
l Store maximumn force in each strut

greater than allowable P less than allowable

angle —@tippiwj,— - angle
\r

equal to allowable angle

¥

[mga =_2—_?}~———‘ Call

STRUT

Figure 7. Flow Diagram of Program LEGGED (Sheet 2 of 3)
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1
TIME = TIME + DT i

DT = DT

Test (TIME - TTDE)

b
i

Gg T¢ 20
Flow Diagram of Program LEGGED (Sheet 3 of 3)

minimm of IP
or 200

Call
@UTPUT

g T 15
Figure 7
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Yes/ No
\Is IPRINT greater than 1? ‘

TPRINT = 1

Read vehicle data
and program constants

Print out vehicle sta
and constants

IPRINT = 2 Read initial value data
and control parameter IPRINT

Print initial values

Stop execution if
no data available

‘ 1 Neturn }

Figure 8. Flow Diagram of Subroutine INPUT
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( Start ’

Derive capsule-to-parachute angular transfer matrix, TCP,
from PCH and YAW parachute hang angles.

Derive parachute-to-absolute angular transfer matrix, TPA,
from parachute swing angle, direction of swing, and roll
angle.

Derive absolute-to-earth angular transfer matrix, TAE, from
ground slope and direction of slope.

Multiply matrix TPA by matrix TCP to form the capsule-to-
absolute angular transfer matrix, TCA.

' Multiply matrix TAE by matrix TCA to form the capsule-to-
| earth angular transfer matrix, TCE.

Define unit vectors along strut stroking direction. Define
strut tip location in capsule coordinates.

Position vehicle so that strut tip (with minimum x coordinate
in earth system) touches ground.

Initialize c.g. velocity components in absolute coordinate
system.

Figure 9. Flow Diagram of Subroutine START (Sheet 1 of 2)

- 30 -

SID 66-278 .

-256 -

SID 66-409




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

I &
NORTH AMERICAN AVIATION, INC. . % SPACE and INFORMATION SYSTEMS DIVISION

Transfer c.g. velocity components into earth coordinate system,

Initialize angular velocity components ‘

l

Initialize parameters to zero
-
!

Transfer gravity to earth coords,

Determine roll, pitch, and yaw in earth coords. ;
|
Print: c.g. location in earth coords,

c.g. velocity in earth coords,
angles in earth coords,

angular velocity in earth coords.

( Return ’

Figure 9. Flow Diagram of Subroutine START (Sheet 2 of 2)
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1 Start ’

Compute c.g. acceleration, velocity, and
position in earth coordinate system

l

Compute angular accelerations

|
Form time derivatives of angular velocities

L
Compute angular velocities at end of half
of time increment in capsule system

Transfer angular velocities to earth system

Form vector time derivative of body unit vectors
I

Increment body vectors

Orthogonalize body vectors

|

Normalize body vectors

Compute final angular velocities at
end of time increment

( Return >

Figure 10. Flow Diagram of Subroutine MQVE
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‘ Start }

Zero Forces and
Torques on CG

/6¢ Loop Fo

Y

©

\Each Strut

Calculate Height
Of Tip Above Ground

Tip Above Yes -

Ground

No

Determine Actual
Strut Stroke and
Tip Velocity

Compute Eia;tT;c
Ratio And

Damping Force

g

® O

Figure 11. Flow Diagram of Subroutine STRUT (Sheet 1 of 2)
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Compute Force In Y
Plastic Region From
Load-Stroke Data

Limit Force
To Positive,
Plastic Amount

Determine Tangential
Tip Velocity

Calculate Force
Vector Due To Strut

Estimate Change In Normal
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Figure 11. Flow Diagram of Subroutine STRUT (Sheet 2 of 2)
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Figure 12. Flow Diagram of Subroutine QUTPUT (Sheet 2 of 2)
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FOREWORD

This user's guide has been prepared by the
Structures and Dynamics Department of North
American Aviation Inc. /Space and Information
Systems Division for NASA/MSC under Contract
NAS9-4915, ""Mechanical Impact System Design
for Advanced Spacecraft, The program was devel-
oped by D. N, Herting and J. R. Partin. This guide
is intended as documentation of a FORTRAN IV com-
puter program "6 DAF" developed by Systems Dynam-
ics in 1963, A report, SID 63-851, '"Mathematical
Analysis of Landing Dynamics,' June 1963, may be
consulted for further information on the analysis.
The Project Manager for MISDAS has been A, I,
Bernstein and the Project Engineer has been
A. S. Musicman.
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INTRODUCTION

The specific need for an analytic tool in the Apollo landing problem
was the impetus for the development of this program. Although the basic
mechanics are general enough for other applications, the terminology and
angle conventions remain geared to Apollo. The dynamics of two rigid bodies
are calculated in three dimensions. Two bodies "COUCH" and "HULL'" are
subject to applied forces from interconnecting, pin jointed, plastic stroking,
struts. One body "HULL" is subject to forces applied by the earth to
deformable points on its surface. Figure 1l may assist in visualizing the two
bodies.

Although this program has existed since 1963, complete documentation
has not been-accomplished. The program, however, is well checked out and
may be used with a minimum knowledge of its inner mechanics. General
flow diagrams and a program listing are included in Appendix C.
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Figure 1. A Two-Dimensional Representation of Two-Body,
Three-Dimensional Landing Impact Program Variables
Showing Adaptation to MISDAS Design
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INPUT DATA

The method of loading input data is with "DECRD, ' a standard IBM
subroutine. Locations for all necessary variables are given in the sample
data section, Appendix A. Each input variable is assigned a location number.
The location of the first variable on a card is punched, followed by up to five
sequential decimal variables. Any order of cards may be used with the
exception of the last card in each case, which must have a (-) in the first
column. Any number of variables may be changed in each subsequent case,
with other input variables remaining unchanged by execution.

FORCE-STROKE FUNCTIONS

Both the struts and heat shield points use a similar format for defining
a force-stroke function. A sample is shown in Figure 2. The force in the
strut is approximated by straight lines valid between discrete stroke points.
The stroke points are stored in the array, STRQK. The constant forces
between these strokes are stored in the array, FQRS. If a slope or ramp in
the force is needed, it is stored in the array, RAMP,

The forces generated by this method are purely plastic and when the
strut reverses motion at a point it generates no force. Any future travel in
the original direction will cause no force until the reversal point is reached,
at which the force-stroke curve is picked up again.

The struts have forces, strokes, and ramps in tension and compres-
sion. On the tension side they are FQRST, STRPKT, and RAMPT, and on
the compression side they are FOQRSC, STR@®KC, and RAMPC,

The struts have an added coulomb friction in both directions to provide
forces at all possible positions. These are stored in the arrays FMUC and
FMUT.

The heat shield points have the added feature of allowing some
elasticity. The first stroke and ramp are purely elastic and are carried
along until the point reverses in motion. The point then unloads along the
original elastic ramp. The first FQRCE location is not used.
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FORCE

FORC34T | 0ADING PATH

RAMP
FORC, | << /\/,»—J”
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:t\ 4 -+
STROK, STROK , STROK 5
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Figure 2. Sample Force-Stroke Function
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ANGLE CONVENTIONS

The angles used as input to the program are roll, pitch, yaw, slope,
and direction of slope. These angles are all measured by right-hand rule
relative to an absolute coordinate system fixed along the vertical and hori-
zontal velocities. Figures 3 and 4 describe these angles. To produce a
given attitude, the capsule is placed upright with its z axis aligned with the
horizontal velocity, its x axis pointing vertically upward, and its y axis
pointing according to the right-hand rule. It is first rolled about x] (vertical),
then pitched about y, (in the horizontal plane), then yawed about z. (the
actual capsule axis).

The slope angle is the maximum slope of the earth; the direction of
slope is the angle, measured in the horizontal plane, from the horizontal
velocity to the maximum upslope.

Output angles are also roll, pitch, and yaw except that they are
measured relative to the earth axis system. The earthzaxisisin the plane of
horizontal and vertical velocities, the earth y and z axes in the ground plane,
and the earth x axis normal to the ground plane.
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Figure 4. Roll Angle Definition
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OUTPUT

The output of the program consists of a page of general data, optioned
printing of pertinent variables versus time and optioned CRT plotting of the
same variables. Since the program was initially developed for the solution
of the Apollo impact problem, the first mass is named ""Pressure Hull" or
"P.H." and the second mass is labeled '"Couch." A sample output is given
in Appendix B.

The first printed page of output for each case consists of the initial
impact conditions, the mass and c.g. data, the maximum accelerations, strut
strokes and forces, and final parameters., The three numbers under coef-
ficient of friction are initial friction, second friction, stroke at which first
friction ends and stroke at which second friction starts acting, with a ramp
in between. The number under "CSS HULL" is an identification number and
is not used by the program. Maximum accelerations are along the capsule
axes with maximum yz plane acceleration and maximum total acceleration
printed below the axes numbers. The rotational accelerations are in G's per
foot and may be converted to radians per second squared by multiplying by
32.2. The strut attenuator lengths and loads are self-explanatory except that
they are labeled for the Apollo system. The struts are in order, however,
from strut No. 1 on the left to strut No. 8 on the right. The final parameters
are relative to the earth coordinate system with the attitude measured from
the earth system to the capsule and couch axes.

The output variables for both printing and plotting are stored corre-
sponding to points in a time array. Test numbers in the input determine
which variables are to be plotted or printed. Accelerations and angular
velocities are measured in the body axis system. Pressure hull linear
velocities and positions are measured from the earth system. Couch relative
velocities are measured in the pressure hull system. Strut strokes are given
in inches. In the CRT plots the initial starting point is the strut number.
Actual stroke is the difference from the starting point.

The variable CRT plotting is much easier to interpret than the printing
and most of the work should be done with the CRT. The printing options were
used only as the program developed and are only recommended when accurate
numbers are desired,
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Figure 5. Stroke Versus Time
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Figure 7. Capsule Angular Acceleration Versus Time
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Figure 9. Capsule Angular Velocities Versus Time
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Figure 10, Capsule Displacement Versus Time
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Figure 11. Capsule Angles Versus Time

- 41 -
. SID 66-279

- 349 - SID 66-409




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION
WORZ VEL  VERT VEL  FRICTION ROLL PITCH YAW SLOPE D-SLOPE €SS HULL 51':"0560
0 P00 25.00 0.35 22.%0 12,00 0,00 -5.,00 0.00 0,6000
|
A
| '
s 1
1
AY
§ °
Pt
4
]
-s
0 0.1 0.2 0,3 0.4 0.5 0.8 0.7 0.8 0.9 1.0
X
0.5
1
3 —
] 7
T g ~
>
0.5 7
i )
] {
- 1
-1.0 f
L 8 1
Y L=
1
-$.8
ARt
A
2.0 F
0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0
é 4
s 2
.1
2 h
1}
1
=
z ©
1 . - P
Yy
-2 ]
X ]
\ 7
- al
1}
-4
0.1 0.2 0.3 0.4 0.9 0.6 0.7 0.8 0.9 1.0

TINE - SECONOS

Figure 12. Couch Linear Accelerations Versus Time
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Figure 13, Couch Angular Accelerations Versus Time
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Figure 14. Couch Reliable Linear Velocities Versus Time
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Figure 15. Couch Reliable Angular Velocities Versus Time
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CALL
INISHL SET UP PROGRAM

N = Nym SET UP TIME LOOP
M-l
o LiM-1 TIME CALCULATION

CALCULATE VELOCITIES
AND POSITIONS

(ENERGY.< .MINIMUM) STOP 1F LOW ENERGY

->
STORE
VARIABLES VARIABLE STORAGE
Te N1
o~
TEST AND STORE
MAXIMUM'S AND
MINIMUM'S
CALCULATE COUCH STRUT
FORCES AND MOMENTS
CALCULATE STRUCTURE-
EARTH FORCES AND
MOMENTS
M= M+1 TIME INCREMENT

CALL
GRAPH PLOT RESULTS ON CRT

< M: MLm TEST FOR TIME LIMIT
>
D

EN

Figure 16. Main Program
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READ INPUT DATA

v

CALCULATE INITIAL STRUT LENGTHS
AND POSITIONS REL, TO COUCH C. G.

v

SET MAX'S, AND MIN’S,

v

CALCULATE CAPSULE TO ABSOLUTE
MATRIX [A] USING ROLL, PITCH, YAW

v

CALCULATE ABSOLUTE TO GROUND
MATRIX [G] USING SLOPE AND ITS DIRECTION

v

SET INITIAL VELOCITIES AND
GRAVITY REL. TO GROUND COORD. SYSTEM

v

MULTIPLY [A] [G] TO OBTAIN A
CAPSULE TO GROUND MATRIX
(AND COUCH TO GROUND)

v

FIND LOWEST PT. ON CAPSULE

AND SET CAPSULE AND COUCH

POSITION VECTORS SO CAPSULE
TOUCHES GROUND

v

RETURN

Figure 17. INISHL Subroutine
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DO FOR BOTH
COUCH & STRUCTURE

a, -

T
! i

v

ACCELERATIONS

VELOCITIES

POSITIONS

IN BODY COORD'S

= - dt
W, =W+ [}:Ng( +w, W, (Iyy In)] oo

- i, dt
M (TORQUES) ARE w w [): M rw, 0 0, Ixx)]_

dt
W, =w, + I:Z:Mz + Wy Wy (I - 'YY)]_I;

'YY

OBTAINS NEW TRANSFER
MATRIX FOR ANGULAR
POSITION

Figure 18,

[

v

TRANSFER @ TO
ABSOLUTE COORDS.

v

CROSS MULTIPLY & BY
UNIT VECTORS ON BODY, ¥}
TO OBTAIN ROTATIONS, AT}

v

MOVE UNIT VECTORS
MANUALLY BY:

=T+ 4T d

3

FABRICATE NEW TRANSFER
MATRIX USING NEW UNIT
VECTORS ON BODY

v

RETURN

o

MQ@VE Subroutine

- 50 -

SID 66-279

- 358 -

SID 66-409




NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

() COMPRESSION

. STRUT LENGTH & VELOCITY [«

SET £ F*and
ZTs=0

v

CALCULATE DO FOR 6 COUCH STRUTS

TEST
STROKING
VELOCITY

TENSION (+)

TEST STROKE(S) VERSUS

| PREVIOUS MAXIMUM STROKE
(Smax)
E = (5) CALCULATE FORCE DUE
= Fs=# | TO HONEYCOMS - £(5)
SIMILAR TO S u s
TENSION AND FRICTION DEVICE -u
SIDE
REDUCE FORCE IF
| | LOW VELOCITY ANTI-CHATTER DEVICE

v

CALCULATE FORCE AND
TORQUE COMPONENTS

v

ZF=EF+F,
=2 Ti + Tsi
L REPEAT FOR ALL STRUTS
RETURN

Figure 19. COUCH Subroutine
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ZFH=0
ETH=0
|
| =
A
4= -Ryy
CALCULATE HEI1GHT OF
DO FOR 200 PT. ABOVE OR BELOW
HULL POINTS GROUND LEVEL
BELOW ABOVE
GROUND GROUND
1t——_‘ <
INELASTIC TEST IF PENETRATION
fAsTIC Y EXCEEDS ELASTICITY
CALCULATE TOTAL

CRUSHING AT POINT
& FIND FORCE

Fr)

|

P!

MOVE VERICLE
OINT DUE TO
CRUSHING

REPEAT FOR
200 HULL POINTS

I_—_ﬁ

4
g, 4 ELASTIC EQUATION
Fn=Fe- spastic

LOOK UP NORMAL FORCE IN
MEMORY TABLE

——

CAL
VELOCITY OF
POINT

CULATE

:

CALCULATE FRICTION
COEFFICIENT

|

Fr=Fp g

TANGENT FORCE

:

FOR o e ZONTAL ANTI-CHATTER MECHANISM
VELOCITIES

I

CALCULATE FORCE
& TORQUE COMPONENTS

Fi&Tj

;

LTHi

ZFRi = Z FHi + Fj

*ETHi+ T

l

RETURN

Figure 20. HULL Subroutine
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